Correlation between Peak Height of Polar Mesospheric Clouds and Mesopause Temperature
Abstract
:1. Introduction
2. Data and Models
2.1. SOFIE/AIM Data
2.2. 0-D PMC Model
3. Analysis of Observational Results
3.1. Distribution of Peak Height of PMCs and Mesopause Altitude
3.2. The Correlation between the Peak Height of PMCs and the Mesopause Temperature
4. Analysis of Model Results
4.1. Typical Case Analysis under Different Mesopause Temperatures
4.2. Statistical Correlation for Years 2008–2014
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalin, P.; Perminov, V.; Pertsev, N.; Romejko, V. Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds. J. Geophys. Res. Atmos. 2020, 125, e2019JD030814. [Google Scholar] [CrossRef]
- Miao, J.X.; Gao, H.Y.; Kou, L.L.; Zhang, Y.H.; Li, Y.; Chu, Z.G.; Bu, L.B.; Wang, Z. A case study of midlatitude noctilucent clouds and its relationship to the secondary-generation gravity waves over tropopause inversion layer. J. Geophys. Res. Atmos. 2022, 127, e2022JD036912. [Google Scholar] [CrossRef]
- Thomas, G.E.; Olivero, J.J.; Jensen, E.J.; Schroeder, W.; Toon, O.B. Relation between increasing methane and the presence of ice clouds at the mesopause. Nature 1989, 338, 490–492. [Google Scholar] [CrossRef]
- Hervig, M.; Thompson, R.E.; McHugh, M.; Gordley, L.L.; Russell, J.M., III; Summers, M.E. First confirmation that water ice is the primary component of polar mesospheric clouds. Geophys. Res. Lett. 2001, 28, 971–974. [Google Scholar] [CrossRef]
- Hervig, M.E.; Berger, U.; Siskind, D.E. Decadal variability in PMCs and implications for changing temperature and water vapor in the upper mesosphere. J. Geophys. Res. Atmos. 2016, 121, 2383–2392. [Google Scholar] [CrossRef]
- Gardner, C.S.; Papen, G.C.; Chu, X.; Pan, W. First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the north and south poles. Geophys. Res. Lett. 2001, 28, 1199–1202. [Google Scholar] [CrossRef]
- Petelina, S.V.; Llewellyn, E.J.; Degenstein, D.A.; Lloyd, N.D. Odin/OSIRIS limb observations of polar mesospheric clouds in 2001-2003. J. Atmos. Sol. Terr. Phys. 2006, 68, 42–55. [Google Scholar] [CrossRef]
- Duft, D.; Nachbar, M.; Leisner, T. Unravelling the microphysics of polar mesospheric cloud formation. Atmos. Chem. Phys. 2019, 19, 2871–2879. [Google Scholar] [CrossRef]
- Kaifler, N.; Baumgarten, G.; Klekociuk, A.R.; Alexander, S.P.; Fiedler, J.; Lübken, F.-J. Small scale structures of NLC observed by lidar at 69N/69S and their possible relation to gravity waves. J. Atmos. Sol. Terr. Phys. 2006, 104, 244–252. [Google Scholar] [CrossRef]
- Thomas, G.E. Mesospheric clouds and the physics of the mesopause region. Rev. Geophys. 1991, 29, 553–575. [Google Scholar] [CrossRef]
- Russell, J.M., III; Rong, P.; Bailey, S.M.; Hervig, M.E.; Petelina, S.V. Relationship between the summer mesopause and polar mesospheric cloud heights. J. Geophys. Res. 2010, 15, D16209. [Google Scholar] [CrossRef]
- Sheese, P.E.; Llewellyn, E.J.; Gattinger, R.L.; Bourassa, A.E.; Degenstein, D.A.; Lloyd, N.D.; McDade, I.C. Mesopause temperatures during the polar mesospheric cloud season. Geophys. Res. Lett. 2011, 38, L11803. [Google Scholar] [CrossRef]
- Siskind, D.E.; Merkel, A.W.; Marsh, D.R.; Randall, C.E.; Hervig, M.E.; Mlynczak, G.; Russell, J.M., III. Understanding the effects of polar mesospheric clouds on the environment of the upper mesosphere and lower thermosphere. J. Geophys. Res. Atmos. 2018, 123, 11705–11719. [Google Scholar] [CrossRef]
- Bailey, S.M.; Merkel, A.W.; Thomas, G.E.; Carstens, J.N. Observations of polar mesospheric clouds by the Student Nitric Oxide Explorer. J. Geophys. Res. 2005, 110, D13203. [Google Scholar] [CrossRef]
- Chu, X.; Nott, G.J.; Espy, P.J.; Gardner, C.S.; Diettrich, J.C.; Clilverd, M.A.; Jarvis, M.J. Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5°S, 68.0°W). Geophys. Res. Lett. 2004, 31, L02114. [Google Scholar] [CrossRef]
- Jensen, E.; Thomas, G.E. A growth-sedimentation model of polar mesospheric clouds: Comparison with SME measurements. J. Geophys. Res. 1988, 93, 2461–2473. [Google Scholar] [CrossRef]
- Rapp, M.; Thomas, G.E. Modeling the microphysics of mesospheric ice particles: Assessment of current capabilities and basic sensitivities. J. Atmos. Sol. Terr. Phys. 2006, 68, 715–744. [Google Scholar] [CrossRef]
- Lübken, F.-J.; Rapp, M.; Strelnikova, I. The sensitivity of mesospheric ice layers to atmospheric background temperatures and water vapor. Adv. Space Res. 2007, 40, 794–801. [Google Scholar] [CrossRef]
- Rong, P.P.; Russell, J.M., III; Hervig, M.E.; Bailey, S.M. The roles of temperature and water vapor at different stages of the polar mesospheric cloud season. J. Geophys. Res. 2009, 117, D04208. [Google Scholar] [CrossRef]
- Russell, J.M.; Bailey, S.M.; Gordley, L.L.; Rusch, D.W.; Horányi, M.; Hervig, M.E.; Thomas, G.E.; Randall, C.E.; Siskind, D.E.; Stevens, M.H.; et al. The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results. J. Atmos. Sol. Terr. Phys. 2009, 71, 289–299. [Google Scholar] [CrossRef]
- Hervig, M.E.; Stevens, M.H.; Gordley, L.L.; Deaver, L.E.; Russell, J.M., III; Bailey, S.M. Relationships between polar mesospheric clouds, temperature, and water vapor from Solar Occultation for Ice Experiment (SOFIE) observations. J. Geophys. Res. 2009, 114, D20203. [Google Scholar] [CrossRef]
- Mauersberger, K.; Krankowsky, D. Vapor pressure above ice at temperatures below 170K. Geophys. Res. Lett. 2003, 30, 1121–1123. [Google Scholar] [CrossRef]
- Murphy, D.M.; Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 2005, 131, 1539–1565. [Google Scholar] [CrossRef]
- Hervig, M.E.; Gordley, L.L.; Stevens, M.H.; Russell, J.M., III; Bailey, S.M.; Baumgarten, G. Interpretation of SOFIE PMC measurements: Cloud identification and derivation of mass density, particle shape, and particle size. J. Atmos. Sol. Terr. Phys. 2009, 71, 316–330. [Google Scholar] [CrossRef]
- Wehr, T.; Kubota, T.; Tzeremes, G.; Wallace, K.; Nakatsuka, H.; Ohno, Y.; Koopman, R.; Rusli, S.; Kikuchi, M.; Eisinger, M.; et al. The EarthCARE mission–science and system overview. Atmos. Meas. Tech. 2023, 16, 3581–3608. [Google Scholar] [CrossRef]
- Ren, K.; Gao, H.Y.; Niu, S.Q.; Kou, L.L.; Zhang, L.G.; Xie, Y.Q.; Bu, L.B. Simulation of polar mesospheric cloud measurements via spaceborne LiDAR and detection efficiency analysis. Appl. Opt. 2024, 63, 7056–7070. [Google Scholar] [CrossRef]
- Gao, H.Y.; Shepherd, G.G.; Tang, Y.; Bu, L.B.; Wang, Z. Double-layer structure in polar mesospheric clouds observed from SOFIE/AIM. Ann. Geophys. 2017, 35, 295–309. [Google Scholar] [CrossRef]
- Gao, H.Y.; Li, L.C.; Bu, L.B.; Zhang, Q.L.; Tang, Y.H.; Wang, Z. Effect of Small-Scale Gravity Waves on Polar Mesospheric Clouds Observed From CIPS/AIM. J. Geophys. Res. Space Phys. 2018, 123, 4026–4045. [Google Scholar] [CrossRef]
Parameters | Case 1 | Case 2 | Case 3 |
---|---|---|---|
Mesopause altitude/km | 88.4 | 87.8 | 87.0 |
Peak height Zmax/km | 83.2 | 85.0 | 85.6 |
Cloud top Ztop/km | 90.0 | 89.0 | 86.6 |
Cloud bottom Zbot/km | 81.6 | 84.0 | 85.2 |
Ice water content IWC/(ng/m2) | 154.2 | 65.7 | 11.5 |
Mesopause temperature/K | 123.3 | 135.3 | 142.1 |
Zmes-Zmax/km | 5.2 | 2.8 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Gao, H.; Sun, S.; Li, X. Correlation between Peak Height of Polar Mesospheric Clouds and Mesopause Temperature. Atmosphere 2024, 15, 1149. https://doi.org/10.3390/atmos15101149
Li Y, Gao H, Sun S, Li X. Correlation between Peak Height of Polar Mesospheric Clouds and Mesopause Temperature. Atmosphere. 2024; 15(10):1149. https://doi.org/10.3390/atmos15101149
Chicago/Turabian StyleLi, Yuxin, Haiyang Gao, Shaoyang Sun, and Xiang Li. 2024. "Correlation between Peak Height of Polar Mesospheric Clouds and Mesopause Temperature" Atmosphere 15, no. 10: 1149. https://doi.org/10.3390/atmos15101149
APA StyleLi, Y., Gao, H., Sun, S., & Li, X. (2024). Correlation between Peak Height of Polar Mesospheric Clouds and Mesopause Temperature. Atmosphere, 15(10), 1149. https://doi.org/10.3390/atmos15101149