Assessing Nitrogen Dioxide in the Highveld Troposphere: Pandora Insights and TROPOMI Sentinel-5P Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Research Techniques and Methods
2.2.1. Pandora-2s Instrument
2.2.2. Pandora (Pan159) Data
2.2.3. TROPOMI Instrument
2.2.4. TROPOMI Data
2.2.5. Data Evaluation
2.2.6. A Priori Profiles Data
2.2.7. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Frequency Cluster Data
3. Results
3.1. Tropospheric Vertical Column NO2 Concentrations
3.1.1. Annual Concentrations
3.1.2. TROPOMI and Pandora-Derived Tropospheric NO2 Concentrations
3.2. Tropospheric Vertical Column Nitrogen Dioxide Profiles
3.3. Backward Trajectories (HYSPLIT)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Week | n_2020 | n_2021 |
---|---|---|
1 | 0 | 6 |
2 | 2 | 7 |
3 | 0 | 7 |
4 | 0 | 5 |
5 | 0 | 0 |
6 | 0 | 0 |
7 | 0 | 1 |
8 | 0 | 7 |
9 | 1 | 5 |
10 | 7 | 6 |
11 | 3 | 6 |
12 | 3 | 5 |
13 | 3 | 4 |
14 | 2 | 7 |
15 | 0 | 6 |
16 | 3 | 7 |
17 | 4 | 6 |
18 | 5 | 3 |
19 | 5 | 6 |
20 | 4 | 5 |
21 | 0 | 7 |
22 | 0 | 5 |
23 | 0 | 1 |
24 | 0 | 3 |
25 | 1 | 6 |
26 | 3 | 5 |
27 | 4 | 4 |
28 | 5 | 6 |
29 | 4 | 6 |
30 | 6 | 3 |
31 | 6 | 5 |
32 | 5 | 7 |
33 | 7 | 2 |
34 | 7 | 4 |
35 | 4 | 7 |
36 | 0 | 4 |
37 | 3 | 6 |
38 | 6 | 6 |
39 | 7 | 6 |
40 | 1 | 7 |
41 | 5 | 7 |
42 | 7 | 7 |
43 | 6 | 6 |
44 | 4 | 7 |
45 | 5 | 6 |
46 | 5 | 7 |
47 | 3 | 7 |
48 | 2 | 7 |
49 | 5 | 7 |
50 | 6 | 5 |
51 | 3 | 7 |
52 | 7 | 6 |
53 | 2 | 1 |
Total | 171 | 279 |
Appendix B
References
- Judd, L.M.; Al-Saadi, J.A.; Szykman, J.J.; Valin, L.C.; Janz, S.J.; Kowalewski, M.G.; Eskes, H.J.; Veefkind, J.P.; Cede, A.; Mueller, M.; et al. Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound. Atmos. Meas. Tech. 2020, 13, 6113–6140. [Google Scholar] [CrossRef] [PubMed]
- Benzerrouk, Z.; Abid, M.; Sekrafi, H. Pollution haven or halo effect? A comparative analysis of developing and developed countries. Energy Rep. 2021, 7, 4862–4871. [Google Scholar] [CrossRef]
- Tiseo, I. Nitrogen Oxide Emissions in the European Union 1990–2021, by Sector [WWW Document]. 2023. Available online: https://www.statista.com/markets/408/energy-environment/ (accessed on 13 April 2024).
- Lourens, A.S.; Butler, T.M.; Beukes, J.P.; Van Zyl, P.G.; Beirle, S.; Wagner, T.K.; Heue, K.-P.; Pienaar, J.J.; Fourie, G.D.; Lawrence, M.G. Re-evaluating the NO2 hotspot over the South African Highveld. S. Afr. J. Sci. 2012, 108, 6. [Google Scholar] [CrossRef]
- Vallero, D. Air Pollutant Hazards. In Fundamentals of Air Pollution, 5th ed.; Vallero, D., Ed.; Academic Press: Boston, MA, USA, 2014; Chapter 7; pp. 197–214. [Google Scholar] [CrossRef]
- Shikwambana, L.; Sivakumar, V. Investigation of various aerosols over different locations in South Africa using satellite, model simulations and LIDAR. Meteorol. Appl. 2019, 26, 275–287. [Google Scholar] [CrossRef]
- Shikwambana, L.; Mhangara, P.; Mbatha, N. Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102130. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Lu, Z.; Streets, D.G.; De Foy, B.; Griffin, D.; Mclinden, C.A.; Lamsal, L.N.; Krotkov, N.A.; Eskes, H. Enhanced Capabilities of TROPOMI NO2: Estimating NOX from North American Cities and Power Plants. Environ. Sci. Technol. 2019, 53, 12594–12601. [Google Scholar] [CrossRef]
- Saxena, P.; Sonwani, S. Criteria Air Pollutants and Their Impact on Environmental Health; Springer Nature: Singapore, 2019. [Google Scholar] [CrossRef]
- Ashmore, M. Air Pollution. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Amsterdam, The Netherlands, 2013; pp. 136–147. [Google Scholar] [CrossRef]
- Fino, A. Air Quality Legislation. In Encyclopedia of Environmental Health, 2nd ed.; Nriagu, J., Ed.; Elsevier: Oxford, UK, 2019; pp. 61–70. [Google Scholar] [CrossRef]
- Gauss, M.; Ellingsen, K.; Isaksen, I.S.A.; Dentener, F.J.; Stevenson, D.S.; Amann, M.; Cofala, J. Changes in nitrogen dioxide and ozone over Southeast and East Asia between year 2000 and 2030 with fixed meteorology. Terr. Atmos. Ocean. Sci. 2007, 18, 475–492. [Google Scholar] [CrossRef]
- Adesina, J.A.; Piketh, S.J.; Qhekwana, M.; Burger, R.; Language, B.; Mkhatshwa, G. Contrasting indoor and ambient particulate matter concentrations and thermal comfort in coal and non-coal burning households at South Africa Highveld. Sci. Total Environ. 2020, 699, 134403. [Google Scholar] [CrossRef] [PubMed]
- Belelie, M.D.; Burger, R.Ρ.; Mkhatshwa, G.; Piketh, S.J. Assessing the impact of Eskom power plant emissions on ambient air quality over KwaZamokuhle. Clean Air J. 2019, 29, 29–37. [Google Scholar] [CrossRef]
- Beirle, S.; Platt, U.; Wenig, M.; Wagner, T. Highly resolved global distribution of tropospheric NO2 using GOME narrow swath mode data. Atmos. Chem. Phys. 2004, 4, 1913–1924. [Google Scholar] [CrossRef]
- Matandirotya, N.R.; Burger, R. An assessment of NO2 atmospheric air pollution over three cities in South Africa during 2020 COVID-19 pandemic. Air Qual. Atmos. Health 2022, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Laakso, L.; Vakkari, V.; Virkkula, A.; Laakso, H.; Backman, J.; Kulmala, M.; Beukes, J.P.; van Zyl, P.G.; Tiitta, P.; Josipovic, M.; et al. South African EUCAARI measurements: Seasonal variation of trace gases and aerosol optical properties. Atmos. Chem. Phys. 2012, 12, 1847–1864. [Google Scholar] [CrossRef]
- Department of Forestry, Fisheries and the Environment. National GHG Inventory Report South Africa: 2000–2020; Department of Forestry, Fisheries and the Environment: Pretoria, South Africa, 2022. [Google Scholar]
- Swap, R.J.; Annegarn, H.J.; Suttles, J.T.; King, M.D.; Platnick, S.; Privette, J.L.; Scholes, R.J. Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000). J. Geophys. Res. Atmos. 2003, 108, 8465. [Google Scholar] [CrossRef]
- Medupi Power Station—Final Scoping Report [WWW Document]. 2005. Available online: https://www.eskom.co.za/OurCompany/SustainableDevelopment/EnvironmentalImpactAssessments/Pages/Medupi_Final_Scoping_Report.aspx (accessed on 12 April 2024).
- Sillman, S. Tropospheric Ozone and Photochemical Smog. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, UK, 2003; pp. 407–431. [Google Scholar] [CrossRef]
- Speight, J.G. Chemicals and the Environment. In Environmental Organic Chemistry for Engineers; Speight, J.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; Chapter 1; pp. 1–41. [Google Scholar] [CrossRef]
- Freiman, M.T.; Piketh, S.J. Air Transport into and out of the Industrial Highveld Region of South Africa. J. Appl. Meteorol. Climatol. 2003, 42, 994–1002. [Google Scholar] [CrossRef]
- Rahal, F. Low-cost sensors, an interesting alternative for air quality monitoring in Africa. Clean Air J. 2020, 30, 1–2. [Google Scholar] [CrossRef]
- Mbandi, A. Air Pollution in Africa in the time of COVID-19: The air we breathe indoors and outdoors. Clean Air J. 2020, 30, 1–3. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Hermans, C.; Simon, P.C.; Carleer, M.; Colin, R.; Fally, S.; Mérienne, M.F.; Jenouvrier, A.; Coquart, B. Measurements of the NO2 absorption cross-section from 42,000 cm−1 to 10,000 cm−1 (238–1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 171–184. [Google Scholar] [CrossRef]
- Finch, D.P.; Palmer, P.I.; Zhang, T. Automated detection of atmospheric NO2 plumes from satellite data: A tool to help infer anthropogenic combustion emissions. Atmos. Meas. Tech. 2022, 15, 721–733. [Google Scholar] [CrossRef]
- Douros, J.; Eskes, H.; van Geffen, J.; Boersma, K.F.; Compernolle, S.; Pinardi, G.; Blechschmidt, A.-M.; Peuch, V.-H.; Colette, A.; Veefkind, P. Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble. Geosci. Model Dev. 2023, 16, 509–534. [Google Scholar] [CrossRef]
- Verhoelst, T.; Compernolle, S.; Pinardi, G.; Lambert, J.-C.; Eskes, H.J.; Eichmann, K.-U.; Fjæraa, A.M.; Granville, J.; Niemeijer, S.; Cede, A.; et al. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmos. Meas. Tech. 2021, 14, 481–510. [Google Scholar] [CrossRef]
- Xue, R.; Wang, S.; Zhang, S.; He, S.; Liu, J.; Tanvir, A.; Zhou, B. Estimating city NOX emissions from TROPOMI high spatial resolution observations—A case study on Yangtze River Delta, China. Urban Clim. 2022, 43, 101150. [Google Scholar] [CrossRef]
- van Geffen, J.; Eskes, H.; Compernolle, S.; Pinardi, G.; Verhoelst, T.; Lambert, J.-C.; Sneep, M.; ter Linden, M.; Ludewig, A.; Boersma, K.F.; et al. Sentinel-5P TROPOMI NO2 retrieval: Impact of version v2.2 improvements and comparisons with OMI and ground-based data. Atmos. Meas. Tech. 2022, 15, 2037–2060. [Google Scholar] [CrossRef]
- Lorente, A.; Boersma, K.F.; Yu, H.; Dörner, S.; Hilboll, A.; Richter, A.; Liu, M.; Lamsal, L.N.; Barkley, M.; De Smedt, I.; et al. Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals. Atmos. Meas. Tech. 2017, 10, 759–782. [Google Scholar] [CrossRef]
- Cooper, M.; Martin, R.; Henze, D.; Jones, D. Effects of a priori profile shape assumptions on comparisons between satellite NO2 columns and model simulations. Atmos. Chem. Phys. 2020, 20, 7231–7241. [Google Scholar] [CrossRef]
- Ialongo, I.; Virta, H.; Eskes, H.; Hovila, J.; Douros, J. Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki. Atmos. Meas. Tech. 2020, 13, 205–218. [Google Scholar] [CrossRef]
- Hönninger, G.; von Friedeburg, C.; Platt, U. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos. Chem. Phys. 2004, 4, 231–254. [Google Scholar] [CrossRef]
- Choi, S.; Lamsal, L.N.; Follette-Cook, M.; Joiner, J.; Krotkov, N.A.; Swartz, W.H.; Pickering, K.E.; Loughner, C.P.; Appel, W.; Pfister, G.; et al. Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns. Atmos. Meas. Tech. 2020, 13, 2523–2546. [Google Scholar] [CrossRef]
- Prunet, P.; Lezeaux, O.; Camy-Peyret, C.; Thevenon, H. Analysis of the NO2 tropospheric product from S5P TROPOMI for monitoring pollution at city scale. City Environ. Interact. 2020, 8, 100051. [Google Scholar] [CrossRef]
- Cede, A.; Tiefengraber, M.; Gebetsberger, M.; Spinei Lind, E. Pandonia Global Network Data Products ReadmeDocument, V1.8-3, Tech. rep. 2021. Available online: https://www.pandonia-global-network.org/wp-content/uploads/2021/01/PGN_DataProducts_Readme_v1-8-3.pdf. (accessed on 10 October 2022).
- Dimitropoulou, E.; Hendrick, F.; Pinardi, G.; Friedrich, M.M.; Merlaud, A.; Tack, F.; De Longueville, H.; Fayt, C.; Hermans, C.; Laffineur, Q.; et al. Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels. Atmos. Meas. Tech. 2020, 13, 5165–5191. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct from Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef]
- Herman, J.; Cede, A.; Spinei, E.; Mount, G.; Tzortziou, M.; Abuhassan, N. NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Abad, G.G.; Souri, A.H.; Bak, J.; Chance, K.; Flynn, L.E.; Krotkov, N.A.; Lamsal, L.; Li, C.; Liu, X.; Miller, C.C.; et al. Five decades observing Earth’s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space. J. Quant. Spectrosc. Radiat. Transf. 2019, 238, 106478. [Google Scholar] [CrossRef]
- Cede, A.; Tiefengraber, M.; Gebetsberger, M.; Spinei Lind, E. Pandonia Global Network Data Products ReadmeDocument, V1.8-5, Tech. rep. 2022. Available online: https://www.pandonia-global-network.org/wp-content/uploads/2022/12/PGN_DataProducts_Readme_v1-8-6.pdf (accessed on 25 June 2023).
- Pinardi, G.; Hendrick, F.; Clemer, K.; Lambert, J.-C.; Bai, J.; Roozendael, M.V. On the use of the maxdoas technique for the validation of tropospheric NO2 column measurements from satellite. In Proceedings of the 2008 EUMETSAT Meteorological Satellite Conference, Darmstadt, Germany, 8–12 September 2008. [Google Scholar]
- Cede, A.; Tiefengraber, M.; Gebetsberger, M.; Spinei Lind, E. Pandonia Global Network Data Products ReadmeDocument, V1.8-5, Tech. rep. 2021. Available online: https://www.pandonia-global-network.org/wp-content/uploads/2022/01/PGN_DataProducts_Readme_v1-8-5.pdf (accessed on 18 May 2023).
- Azad, S.; Ghandehari, M. Emissions of nitrogen dioxide in the northeast U.S. during the 2020 COVID-19 lockdown. J. Environ. Manag. 2022, 312, 114902. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Eskes, H.J.; van Geffen, J.H.G.M.; Boersma, K.F.; Eichmann, K.-U.; Pedergnana, M.; Sneep, M.; Veefkind, J.P.; Loyola, D. S5P/TROPOMI Level-2 Product User Manual Nitrogen Dioxide; ESA: Paris, France, 2020. [Google Scholar]
- Eskes, H.J.; Eichmann, K.-U. S5P MPC Product Readme Nitrogen Dioxide, Report S5P-MPC-KNMI-PRF-NO2, V2.0, ESA. 2021. Available online: https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-NitrogenDioxide-Level-2-Product-Readme-File (accessed on 23 September 2024).
- Zhao, X.; Griffin, D.; Fioletov, V.; McLinden, C.; Cede, A.; Tiefengraber, M.; Müller, M.; Bognar, K.; Strong, K.; Boersma, F.; et al. Assessment of the quality of TROPOMI high-spatial-resolution NO2 data products in the Greater Toronto Area. Atmos. Meas. Tech. 2020, 13, 2131–2159. [Google Scholar] [CrossRef]
- Williams, J.E.; Boersma, K.F.; Le Sager, P.; Verstraeten, W.W. The high-resolution version of TM5-MP for optimized satellite retrievals: Description and validation. Geosci. Model Dev. 2017, 10, 721–750. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Cui, L.; Song, X.; Zhong, G. Comparative Analysis of Three Methods for HYSPLIT Atmospheric Trajectories Clustering. Atmosphere 2021, 12, 698. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. Noaa’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2078. [Google Scholar] [CrossRef]
- Tyson, P.D. Atmospheric transport of aerosols and trace gases over southern Africa. Prog. Phys. Geogr. Earth Environ. 1997, 21, 79–101. [Google Scholar] [CrossRef]
- Lourens, A.S.; Beukes, J.P.; Van Zyl, P.G.; Fourie, G.D.; Burger, J.W.; Pienaar, J.J.; Read, C.E.; Jordaan, J.H. Spatial and temporal assessment of gaseous pollutants in the highveld of South Africa. S. Afr. J. Sci. 2011, 107, 8. [Google Scholar] [CrossRef]
- De Souza, A.; Aristone, F.; Abreu, M.C.; De Oliveira-Júnior, J.F.; Fernandes, W.A.; Pobocikova, I. Spatio-temporal variations of tropospheric nitrogen dioxide in South Mato Grosso based on remote sensing by satellite. Meteorol. Atmos. Phys. 2022, 134, 19. [Google Scholar] [CrossRef]
- Tyson, P.D.; Garstang, M.; Swap, R. Large-Scale Recirculation of Air over Southern Africa. J. Appl. Meteorol. 1996, 35, 2218–2236. [Google Scholar] [CrossRef]
- Thoithi, W.; Blamey, R.C.; Reason, C.J.C. Dry Spells, Wet Days, and Their Trends across Southern Africa during the Summer Rainy Season. Geophys. Res. Lett. 2021, 48, e2020GL091041. [Google Scholar] [CrossRef]
- Mpungose, N.; Thoithi, W.; Blamey, R.C.; Reason, C.J.C. Extreme rainfall events in southeastern Africa during the summer. Theorerical Appl. Climatol. 2022, 150, 185–201. [Google Scholar] [CrossRef]
- Kai, R.F.; Scholes, M.; Piketh, S.J.; Scholes, R.J. Analysis of the first surface nitrogen dioxide concentration observations over the South African Highveld derived from the Pandora-2s instrument. Clean Air J. 2022, 32, 1–11. [Google Scholar] [CrossRef]
- Venter, A.; Lourens, A.S.M. Ambient air quality data reported at Sasol Secunda monitoring stations during COVID-19 lockdown—Mpumalanga, South Africa. Clean Air J. 2021, 31, 1–7. [Google Scholar] [CrossRef]
- Tyson, P.D.; Garstang, M.; Swap, R.; Kâllberg, P.; Edwards, M. An Air Transport Climatology for Subtropical Southern Africa. Int. J. Climatol. 1996, 16, 265–291. [Google Scholar] [CrossRef]
- Ibebuchi, C.C. Circulation pattern controls of wet days and dry days in Free State, South Africa. Meteorol. Atmos. Phys. 2021, 133, 1469–1480. [Google Scholar] [CrossRef]
- Tyson, P.D.; Preston-Whyte, R.A. The Weather and Climate of Southern Africa; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Zhao, X.; Griffin, D.; Fioletov, V.; McLinden, C.; Davies, J.; Ogyu, A.; Lee, S.C.; Lupu, A.; Moran, M.D.; Cede, A.; et al. Retrieval of total column and surface NO2 from Pandora zenith-sky measurements. Atmos. Chem. Phys. 2019, 19, 10619–10642. [Google Scholar] [CrossRef]
- de Lange, A.; Naidoo, M.; Garland, R.M.; Dyson, L.L. The sensitivity of simulated surface-level pollution concentrations to WRF-ARW-model PBL parameterisation schemes over the Highveld of South Africa. Atmos. Res. 2021, 254, 105517. [Google Scholar] [CrossRef]
- Rorich, R.P.; Galpin, J.S. Air quality in the Mpumalanga Highveld region, South Africa. S. Afr. J. Sci. 1998, 94, 109–114. [Google Scholar]
- Cosijn, C. Stable discontinuities in the atmosphere over South Africa. S. Afr. J. Sci. 1996, 92, 381–386. [Google Scholar]
- Hobbs, P.V. Clean air slots amid dense atmospheric pollution in southern Africa. J. Geophys. Res. Atmos. 2003, 108, 8490. [Google Scholar] [CrossRef]
- Scholes, R.J.; Kendall, J.; Justice, C.O. The quantity of biomass burned in southern Africa. J. Geophys. Res. Atmos. 1996, 101, 23667–23676. [Google Scholar] [CrossRef]
- Nkosi, C.; Piketh, S.; Burger, R.; Annegarn, H. Variability of domestic burning habits in the South African Highveld: A case study in the KwaDela Township (April 2017). In Proceedings of the 2017 International Conference on the Domestic Use of Energy (DUE), Cape Town, South Africa, 4–5 April 2017; pp. 23–29. [Google Scholar] [CrossRef]
- Garstang, M.; Tyson, P.D.; Swap, R.; Edwards, M.; Kållberg, P.; Lindesay, J.A. Horizontal and vertical transport of air over southern Africa. J. Geophys. Res. Atmos. 1996, 101, 23721–23736. [Google Scholar] [CrossRef]
- Tyson, P.D.; D’Abreton, P.C. Transport and recirculation of aerosols off Southern Africa—Macroscale plume structure. Atmos. Environ. 1998, 32, 1511–1524. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef]
Data Quality Flag (DQF) Value | Explanation |
---|---|
0 | High-quality data (quality assurance applied) |
1 | Medium-quality data (quality assurance applied) |
2 | Low-quality data (quality assurance applied) |
10 | High-quality data (quality assurance not applied) |
11 | Medium-quality data (quality assurance not applied) |
12 | Low-quality data (quality assurance not applied) |
20 | Unusable data |
21 | Unusable data |
22 | Unusable data |
Tropospheric Vertical Column NO2 (mol/m2) | ||
---|---|---|
Year | Annual Mean (±Stdev) | Annual Median |
2020 | 5.06 × 10−5 ± 8.97 × 10−5 | 2.10 × 10−5 |
2021 | 5.03 × 10−5 ± 9.40 × 10−5 | 1.44 × 10−5 |
p-value | >0.05 | <0.05 |
Tropospheric Vertical Column NO2 (mol/m2) | ||
---|---|---|
Year | Annual Mean (±Stdev) | Annual Median |
2020 | 6.17 × 10−5 ± 1.06 × 10−4 | 2.86 × 10−5 |
2021 | 7.06 × 10−5 ± 1.04 × 10−4 | 2.94 × 10−5 |
p-value | >0.05 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kai-Sikhakhane, R.F.; Scholes, M.C.; Piketh, S.J.; van Geffen, J.; Garland, R.M.; Havenga, H.; Scholes, R.J. Assessing Nitrogen Dioxide in the Highveld Troposphere: Pandora Insights and TROPOMI Sentinel-5P Evaluation. Atmosphere 2024, 15, 1187. https://doi.org/10.3390/atmos15101187
Kai-Sikhakhane RF, Scholes MC, Piketh SJ, van Geffen J, Garland RM, Havenga H, Scholes RJ. Assessing Nitrogen Dioxide in the Highveld Troposphere: Pandora Insights and TROPOMI Sentinel-5P Evaluation. Atmosphere. 2024; 15(10):1187. https://doi.org/10.3390/atmos15101187
Chicago/Turabian StyleKai-Sikhakhane, Refilwe F., Mary C. Scholes, Stuart J. Piketh, Jos van Geffen, Rebecca M. Garland, Henno Havenga, and Robert J. Scholes. 2024. "Assessing Nitrogen Dioxide in the Highveld Troposphere: Pandora Insights and TROPOMI Sentinel-5P Evaluation" Atmosphere 15, no. 10: 1187. https://doi.org/10.3390/atmos15101187
APA StyleKai-Sikhakhane, R. F., Scholes, M. C., Piketh, S. J., van Geffen, J., Garland, R. M., Havenga, H., & Scholes, R. J. (2024). Assessing Nitrogen Dioxide in the Highveld Troposphere: Pandora Insights and TROPOMI Sentinel-5P Evaluation. Atmosphere, 15(10), 1187. https://doi.org/10.3390/atmos15101187