Accuracy Assessment of NOAA IMS 4 km Products on the Tibetan Plateau with Landsat-8 OLI Images
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. IMS Products
2.3. Landsat-8 OLI Data
2.4. Mapping Methods
2.5. Evaluation Methods
3. Results and Discussions
3.1. Accuracy Evaluation
3.2. Impact of Snow-Covered Area on Accuracy Evaluation
3.3. Relationships between Metrics
3.4. Spatial Dependence of Evaluation Accuracy
4. Conclusions
- (1)
- The overall accuracy of IMS 4 km products is relatively high, ranging from 54.3% to 93.9%, with an average accuracy of 76.0%. Average mapping accuracy and snow-free detection accuracy are 88.3% and 84.9%, respectively. IMS 4 km products are applicable for large-scale snow cover detection on the TP.
- (2)
- The average omission error is 11.7%, and the commission error is 45.4%. IMS 4 km products overestimate snow cover on the TP and generally present that with an increasing proportion of snow-covered areas, the probability of omission errors tends to decrease while the probability of commission errors tends to increase. Therefore, when evaluating the accuracy of low- to medium-resolution snow cover products using high-resolution satellite images, it is important to select typical cloud-free images in which snow and snow-free areas are more averagely distributed as reference data.
- (3)
- Elevation is one of the important factors that affect the accuracy of IMS products on the TP, and the mapping accuracy of IMS 4 km products on the TP is elevation-dependent in general, which presents that mapping accuracy is higher at higher-altitude areas, while the missing and false detection rates tend to increase with a decrease in elevation.
- (4)
- At present, the spatial resolution of IMS snow and ice products has been improved to 1 km. However, there is still a challenge to reduce detection errors and uncertainties of IMS products on the TP due to patchiness and the rapid change of snow cover on the TP. As compared to IMS products as the binary data, the fractional snow cover is a more useful measure of snow cover and can more accurately represent the actual snow cover on the surface. Therefore, it is very important to use fractional snow cover products with higher spatial and temporal resolution to monitor and study snow cover variations in the TP so as to better reveal the spatial distribution and temporal evolution characteristics of snow cover on the TP.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating snow-cover trends from space. Nat. Clim. Change 2018, 8, 924–928. [Google Scholar] [CrossRef]
- Musselman, K.N.; Clark, M.P.; Liu, C.; Ikeda, K.; Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Change 2017, 7, 214–219. [Google Scholar] [CrossRef]
- You, Q.; Wu, T.; Shen, L.; Pepin, N.; Zhang, L.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth Sci. Rev. 2020, 201, 103043. [Google Scholar] [CrossRef]
- Robinson, D.A.; Dewey, K.F.; Heim, R.R. Global snow cover monitoring: An update. Bull. Am. Meteorol. Soc. 1993, 74, 1689–1696. [Google Scholar] [CrossRef]
- Déry, S.J.; Brown, R.D. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Lett. 2007, 34, 60–64. [Google Scholar] [CrossRef]
- Choi, G.; Robinson, D.A.; Kang, S. Changing Northern Hemisphere snow seasons. J. Clim. 2010, 23, 5305–5310. [Google Scholar] [CrossRef]
- Lievens, H.; Demuzere, M.; Marshall, H.-P.; Reichle, R.H.; Brucker, L.; Brangers, I.; de Rosnay, P.; Dumont, M.; Girotto, M.; Immerzeel, W.W.; et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 4629. [Google Scholar] [CrossRef]
- Li, W.; Guo, W.; Qiu, B.; Xue, Y.; Hsu, P.-C.; Wei, J. Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales. Nat. Commun. 2018, 9, 4243. [Google Scholar] [CrossRef] [PubMed]
- Hale, K.E.; Jennings, K.S.; Musselman, K.N.; Livneh, B.; Molotch, N.P. Recent decreases in snow water storage in western North America. Commun. Earth Environ. 2023, 4, 170. [Google Scholar] [CrossRef]
- Siirila-Woodburn, E.R.; Rhoades, A.M.; Hatchett, B.J.; Huning, L.S.; Szinai, J.; Tague, C.; Nico, P.S.; Feldman, D.R.; Jones, A.D.; Collins, W.D.; et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2021, 2, 800–819. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Liu, S.; Li, P. Snow cover distribution, variability, and response to climate change in western China. J. Clim. 2006, 19, 1820–1833. [Google Scholar]
- Chu, D.; Liu, L.; Wang, Z. Snow cover on the Tibetan Plateau and topographic controls. Remote Sens. 2023, 15, 4044. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; He, B.; Bao, Q.; Duan, A.; Jin, F.-F. Thermal controls on the Asian summer monsoon. Sci. Rep. 2012, 2, 404. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Ge, Y.; Li, S.; Li, Z.; Xu, X.; Zhou, G.G.; Chen, H.; Wang, H.; Lei, Y.; Zhou, L.; et al. Scientific challenges in disaster risk reduction for the Sichuan–Tibet Railway. Eng. Geol. 2022, 309, 106837. [Google Scholar] [CrossRef]
- Eckerstorfer, M.; Vickers, H.; Malnes, E.; Grahn, J. Near-real time automatic snow avalanche activity monitoring system using Sentinel-1 SAR data in Norway. Remote Sens. 2019, 11, 2863. [Google Scholar] [CrossRef]
- Liang, T.; Zhang, X.; Xie, H.; Wu, C.; Feng, Q.; Huang, X.; Chen, Q. Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sens. Environ. 2008, 112, 3750–3761. [Google Scholar] [CrossRef]
- Gao, J.; Williams, M.W.; Fu, X.; Wang, G.; Gong, T. Spatiotemporal distribution of snow in eastern Tibet and the response to climate change. Remote Sens. Environ. 2012, 121, 1–9. [Google Scholar] [CrossRef]
- Immerzeel, W.; Droogers, P.; de Jong, S.; Bierkens, M. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Huang, C. Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth. Remote Sens. Environ. 2014, 143, 54–63. [Google Scholar] [CrossRef]
- Pu, Z.; Xu, L.; Salomonson, V.V. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, 137–161. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Zhang, G.; Che, T.; Yan, W.; Ye, M.; Ma, N. Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold. Sci. Total Environ. 2019, 651, 2712–2726. [Google Scholar] [CrossRef]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef]
- Chen, X.; Long, D.; Liang, S.; He, L.; Zeng, C.; Hao, X.; Hong, Y. Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data. Remote Sens. Environ. 2018, 215, 284–299. [Google Scholar] [CrossRef]
- Chen, C.; Lakhankar, T.; Romanov, P.; Helfrich, S.; Powell, A.; Khanbilvardi, R. Validation of NOAA-Interactive Multisensor Snow and Ice Mapping System (IMS) by comparison with ground-based measurements over continental United States. Remote Sens. 2012, 4, 1134–1145. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, L.; Yang, J.; Pan, J. Validation of ice mapping system snow cover over southern China based on Landsat Enhanced Thematic Mapper Plus imagery. J. Appl. Remote Sens. 2014, 8, 084680. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Ménard, C.B.; Luojus, K.; Lemmetyinen, J.; Pulliainen, J. Evaluation of snow products over the Tibetan Plateau. Hydrol. Process 2015, 29, 3247–3260. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Chu, D. Remote Sensing of Land Use and Land Cover in Mountain Region; Springer Nature: Singapore, 2020. [Google Scholar]
- Ramsay, B.H. The interactive multisensor snow and ice mapping system. Hydrol. Process 1998, 12, 1537–1546. [Google Scholar] [CrossRef]
- Helfrich, S.R.; McNamara, D.; Ramsay, B.H.; Baldwin, T.; Kasheta, T. Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Process 2007, 21, 1576–1586. [Google Scholar] [CrossRef]
- Frei, A.; Lee, S.Y. A comparison of optical-band based snow extent products during spring over North America. Remote Sens. Environ. 2010, 114, 1940–1948. [Google Scholar] [CrossRef]
- Chang, A.T.C.; Foster, J.L.; Hall, D.K. Effects of forest on the snow parameters derived from microwave measurements during the BOREAS winter field campaign. Hydrol. Process 1996, 10, 1565–1574. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Theoretical Basic Document (ATBD) for the MODIS Snow and Sea Ice-Mapping Algorithms; NASA/Goddard Space Flight Center: Greenbelt, MD, USA, 2001; p. 20771. [Google Scholar]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Duo, C.; Yong, Y.; Jiancan, L. The variations of snow cover days over the Tibetan Plateau during 1981–2010. J. Glaciol. Geocryol. 2015, 37, 1461–1472. (In Chinese) [Google Scholar]
- Liu, X.; Jin, X.; Ke, C. Accuracy evaluation of the IMS snow and ice products in stable snow covers regions in China. J. Glaciol. Geocryol. 2014, 36, 500–507. (In Chinese) [Google Scholar]
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite observed spatiotemporal variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021. J. Hydrol. 2022, 613, 128438. [Google Scholar] [CrossRef]
- Ueno, K.; Tanaka, K.; Tsutsui, H.; Li, M. Snow cover conditions in the Tibetan Plateau observed during the winter of 2003/2004. Arct. Antarct. Alp. Res. 2007, 39, 152–164. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, G.; Yao, T.; Xie, H.; Zhang, H.; Ke, C.; Yao, R. Developing daily cloud-free snow composite products from MODIS Terra-Aqua and IMS for the Tibetan Plateau. IEEE T. Geosci. Remote 2016, 54, 2171–2180. [Google Scholar] [CrossRef]
- Brubaker, K.L.; Pinker, R.T.; Deviatova, E. Evaluation and comparison of MODIS and IMS snow-cover estimates for the continental United States using station data. J. Hydrometeorol. 2005, 6, 1002–1017. [Google Scholar] [CrossRef]
- Pu, Z.; Xu, L. MODIS/Terra observed snow cover over the Tibet Plateau: Distribution, variation and possible connection with the East Asian Summer Monsoon (EASM). Theor. Appl. Climatol. 2009, 97, 265–278. [Google Scholar] [CrossRef]
- Jain, S.; Goswami, A.; Saraf, A. Role of elevation and aspect in snow distribution in western Himalaya. Water Resour. Manag. 2009, 23, 71–83. [Google Scholar] [CrossRef]
IMS | |||||
Landsat-8 OLI | Snow | Non-snow | Total | Producer’s Accuracy | |
Snow | A | B | A + B | A/(A + B) | |
Non-snow | C | D | C + D | ||
Total | A + C | B + D | A + B + C + D | ||
User’s Accuracy | A/(A + C) |
Image No. | Imaging Date | Path | Row | PSCA /% | OE /% | CE /% | NSDR /% | UA /% | PA /% | OA /% | K |
---|---|---|---|---|---|---|---|---|---|---|---|
L1 | 20March2014 | 147 | 36 | 72.7 | 5.9 | 56.6 | 73.6 | 81.6 | 94.1 | 80.3 | 0.4309 |
L2 | 3January2018 | 146 | 35 | 24.7 | 9.3 | 43.1 | 94.9 | 40.9 | 90.7 | 65.3 | 0.3382 |
L3 | 29March2014 | 146 | 37 | 47.1 | 15.7 | 37.1 | 81.8 | 66.9 | 84.3 | 73.0 | 0.4656 |
L4 | 16December2013 | 145 | 36 | 14.6 | 21.6 | 13.8 | 95.9 | 49.3 | 78.4 | 85.1 | 0.5192 |
L5 | 10April2015 | 145 | 39 | 45.7 | 4.4 | 7.7 | 96.2 | 91.3 | 95.6 | 93.8 | 0.8763 |
L6 | 19January2014 | 143 | 35 | 19.4 | 5.5 | 20.2 | 98.4 | 52.9 | 94.5 | 82.7 | 0.5721 |
L7 | 28January2014 | 142 | 37 | 30.3 | 21.8 | 42.2 | 85.9 | 44.6 | 78.2 | 64.0 | 0.2970 |
L8 | 20February2014 | 143 | 39 | 74.2 | 1.2 | 75.0 | 88.2 | 79.1 | 98.8 | 79.8 | 0.3107 |
L9 | 24January2015 | 141 | 40 | 57.2 | 7.6 | 49.9 | 83.1 | 71.2 | 92.4 | 74.3 | 0.4470 |
L10 | 11November2013 | 140 | 40 | 17.7 | 13.1 | 9.7 | 97.0 | 65.9 | 86.9 | 89.7 | 0.6863 |
L11 | 13February2019 | 140 | 37 | 15.6 | 31.1 | 30.0 | 92.4 | 29.7 | 68.9 | 69.8 | 0.2527 |
L12 | 6January2017 | 140 | 35 | 68.4 | 3.8 | 77.6 | 73.2 | 72.8 | 96.2 | 72.9 | 0.2287 |
L13 | 1January2017 | 137 | 34 | 16.0 | 10.8 | 21.6 | 97.5 | 43.9 | 89.2 | 80.1 | 0.4769 |
L14 | 1January2017 | 137 | 37 | 65.3 | 4.1 | 73.3 | 77.8 | 70.8 | 95.9 | 71.7 | 0.2660 |
L15 | 18December2014 | 138 | 38 | 95.1 | 2.3 | 78.8 | 31.8 | 96.0 | 97.7 | 93.9 | 0.2239 |
L16 | 8January2017 | 138 | 39 | 19.6 | 17.1 | 20.3 | 95.0 | 49.9 | 82.9 | 80.3 | 0.5008 |
L17 | 16March2014 | 135 | 40 | 23.4 | 27.8 | 16.0 | 90.8 | 58.0 | 72.2 | 81.3 | 0.5179 |
L18 | 3April2018 | 136 | 39 | 65.7 | 10.4 | 71.3 | 62.4 | 67.6 | 89.6 | 66.7 | 0.2051 |
L19 | 21January2015 | 136 | 38 | 69.4 | 5.9 | 67.7 | 70.6 | 75.9 | 94.1 | 75.2 | 0.3112 |
L20 | 4February2017 | 135 | 38 | 31.0 | 13.5 | 34.8 | 91.5 | 52.7 | 86.5 | 71.8 | 0.4392 |
L21 | 8January2018 | 133 | 38 | 27.0 | 46.5 | 23.1 | 81.7 | 46.2 | 53.5 | 70.6 | 0.2900 |
L22 | 12January2017 | 134 | 37 | 83.5 | 0.5 | 82.1 | 87.5 | 86.0 | 99.5 | 86.0 | 0.2555 |
L23 | 19January2017 | 135 | 36 | 45.7 | 1.6 | 82.9 | 92.8 | 50.0 | 98.4 | 54.3 | 0.1440 |
L24 | 5January2017 | 133 | 36 | 35.0 | 3.2 | 32.7 | 97.5 | 61.4 | 96.8 | 77.6 | 0.5651 |
L25 | 11February2018 | 131 | 38 | 45.5 | 6.9 | 68.3 | 84.7 | 53.2 | 93.1 | 59.6 | 0.2338 |
Average | 44.4 | 11.7 | 45.4 | 84.9 | 62.3 | 88.3 | 76.0 | 0.3942 |
OE | CE | NSDR | UA | PA | OA | K | PSCA | |
---|---|---|---|---|---|---|---|---|
OE | 1.00 | |||||||
CE | −0.56 b | 1.00 | ||||||
NSDR | 0.18 | −0.60 b | 1.00 | |||||
UA | −0.60 b | 0.42 c | −0.55 b | 1.00 | ||||
PA | −1.00 a | 0.56 b | −0.18 | 0.60 b | 1.00 | |||
OA | −0.14 | −0.36 | −0.09 | 0.56 b | 0.14 | 1.00 | ||
K | 0.02 | −0.80 a | 0.51 b | 0.11 | −0.02 | 0.63 a | 1.00 | |
PSCA | −0.59 b | 0.83 a | −0.75 a | 0.83 a | 0.59 b | 0.11 | −0.45 c | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, D. Accuracy Assessment of NOAA IMS 4 km Products on the Tibetan Plateau with Landsat-8 OLI Images. Atmosphere 2024, 15, 1234. https://doi.org/10.3390/atmos15101234
Chu D. Accuracy Assessment of NOAA IMS 4 km Products on the Tibetan Plateau with Landsat-8 OLI Images. Atmosphere. 2024; 15(10):1234. https://doi.org/10.3390/atmos15101234
Chicago/Turabian StyleChu, Duo. 2024. "Accuracy Assessment of NOAA IMS 4 km Products on the Tibetan Plateau with Landsat-8 OLI Images" Atmosphere 15, no. 10: 1234. https://doi.org/10.3390/atmos15101234
APA StyleChu, D. (2024). Accuracy Assessment of NOAA IMS 4 km Products on the Tibetan Plateau with Landsat-8 OLI Images. Atmosphere, 15(10), 1234. https://doi.org/10.3390/atmos15101234