A Study on the Pre-Survey and Plan for the Establishment of the Korean Typhoon Impact-Based Forecast
Abstract
:1. Introduction
1.1. Background of Study
1.2. Typhoon Forecast
1.2.1. Existing Global Study on Typhoon Impact-Based Forecasting
1.2.2. Korea Typhoon Forecast Status
2. Data and Methods
2.1. Data
2.2. Methods
Numerical Modeling
3. Results
3.1. Recent Trends and Changes in Typhoons Affecting the Korean Peninsula
3.1.1. Typhoon Impact Frequency
3.1.2. Meteorology Data Accompanied by Typhoons
3.2. Typhoon Ready System
3.2.1. Configuration
3.2.2. Risk Index
Strong Wind
Heavy Rain
Storm Surge
Air Quality
Over 60 Years of Age | Children (0–17 Years Old) | Vulnerable Population | Total Population | Rate | |
---|---|---|---|---|---|
Seoul | 2,124,510 | 1,227,792 | 3,352,302 | 9,586,195 | 0.35 |
Busan | 892,277 | 442,776 | 1,335,053 | 3,349,016 | 0.4 |
Deagu | 559,877 | 352,737 | 912,614 | 2,410,700 | 0.38 |
Incheon | 597,761 | 443,334 | 1,041,095 | 2,945,454 | 0.35 |
Gwangju | 290,547 | 241,381 | 531,928 | 1,477,573 | 0.36 |
Deajeon | 299,964 | 228,182 | 528,146 | 1,488,435 | 0.35 |
Ulsan | 218,134 | 186,950 | 405,084 | 1,135,423 | 0.36 |
Sejong | 48,720 | 83,214 | 131,934 | 353,933 | 0.37 |
Gyeong-gi | 2,529,512 | 2,190,957 | 4,720,469 | 13,511,676 | 0.35 |
Gangwon | 431,276 | 211,536 | 642,812 | 1,521,763 | 0.42 |
Chungbuk | 390,720 | 239,792 | 630,512 | 1,632,088 | 0.39 |
Chungnam | 527,371 | 332,379 | 859,750 | 2,176,636 | 0.39 |
Jeonbuk | 492,736 | 263,774 | 756,510 | 1,802,766 | 0.42 |
Jeon-nam | 537,046 | 261,470 | 798,516 | 1,788,807 | 0.45 |
Gyeongbuk | 749,388 | 365,104 | 1,114,492 | 2,644,757 | 0.42 |
Gyeongnam | 790,629 | 523,311 | 1,313,940 | 3,333,056 | 0.39 |
Jeju | 142,796 | 116,257 | 259,053 | 670,858 | 0.39 |
Case: Typhoon Rusa (0215)
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Meteorological Organization. State of the Global Climate in 2021; World Meteorological Organization: Geneva, Switzerland, 2021; Available online: https://library.wmo.int/records/item/56300-state-of-the-global-climate-2021 (accessed on 10 October 2024).
- World Meteorological Organization. WMO Guidelines on Multi-Hazard Impact-Based Forecast and Warning Services; World Meteorological Organization: Geneva, Switzerland, 2010; Available online: https://etrp.wmo.int/pluginfile.php/42254/mod_page/content/18/WMO-1150_multihazard-guidelines_en.pdf (accessed on 10 October 2024).
- Korea Meteorological Administration. A Planning Study on How to Introduce Impact Forecasts; Korea Meteorological Administration: Seoul, Republic of Korea, 2016; pp. 1–189. Available online: https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=TRKO201800035577&dbt=TRKO&rn= (accessed on 10 October 2024).
- Fire and Disaster Prevention Agency. Planning, and Research on the Advancement of the Korean Disaster Management System Through Case Studies of Advanced Disaster Management Systems; Fire and Disaster Prevention Agency: Seoul, Republic of Korea, 2013; pp. 1–485. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201400019354 (accessed on 10 October 2024).
- Korea Meteorological Administration. Final Report on the Development of Heavy Rain Risk Assessment Technology by Basin Using Ultra-Short, Short, Medium, and Long-Term Forecast Data; Korea Meteorological Administration: Seoul, Republic of Korea, 2020; pp. 1–142. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202200009904 (accessed on 10 October 2024).
- Korea Meteorological Administration. Final Report on Development of Disaster Impact Model in Heat Wave; Korea Meteorological Administration: Seoul, Republic of Korea, 2021; pp. 1–1077. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202200008470 (accessed on 10 October 2024).
- Korea Meteorological Administration. Final Report on the Development of Disaster Impact Models in the Heavy Rain Sector; Korea Meteorological Administration: Seoul, Republic of Korea, 2021; pp. 1–378. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202300027958 (accessed on 10 October 2024).
- Choi, J.W.; Park, J.K.; Lee, K.; Kim, B.J. Deceasing trend of summertime TC frequency in Japan. J. Environ. Sci. Int. 2020, 24, 851–864. [Google Scholar] [CrossRef]
- Jang, H.W.; Son, C.Y.; Park, J.H.; Jang, S.H.; Kim, J.M. A study on the Time-periodic characteristics of changes in typhoon activities and typhoon induced rainfall over the Korean peninsula. J. Korean Soc. Hazard Mitig. 2022, 18, 395–402. [Google Scholar] [CrossRef]
- Kim, T.H.; Jeong, J.H.; Kim, Y.K. Sensitivity analysis of the WRF Model according to the impact of nudging for improvement of ozone prediction. J. Environ. Sci. Int. 2022, 25, 683–694. [Google Scholar] [CrossRef]
- Ashish, S.; Harindra, J.S.F.; Alan, F.H.; Jessica, J.H.; Michael, B.; Chen, F. Urban meteorological modeling using WRF: A sensitivity study. Int. J. Climatol. 2016, 37, 1885–1900. [Google Scholar] [CrossRef]
- Na, H.N.; Jung, W.S. Assessment of the Suitability of the Typhoon Disaster Prevention Model according to the Typhoon Maximum Wind Speed Radius and Surface Roughness Length. J. Korean Soc. Atmos. Environ. 2019, 35, 172–183. [Google Scholar] [CrossRef]
- Na, H.N.; Jung, W.S. A Study on Improving the Prediction Accuracy of a Typhoon Disaster Prevention Model Part II: Sensitivity of the WRF Model to GDAPS, RDAPS, GFS Data. J. Korean Soc. Atmos. Environ. 2020, 36, 522–532. [Google Scholar] [CrossRef]
- Xu, D.; Huang, X.Y.; Wang, H.; Arthur, P. M Impact of Assimilating Radiances with the WRFDA ETKF/3DVARHybrid System on Prediction of Two Typhoons in 2012. J. Meteorol. Res. 2015, 29, 28–44. [Google Scholar] [CrossRef]
- Thuc, T.; Thuy, T.T.; Huong HT, L. Multi-hazard risk assessment of typhoon, typhoon-rainfall and post-typhoon-rainfall in the Mid-Central Coastal region of Vietnam. Int. J. Disaster Resil. Built Environ. 2023, 14, 402–419. [Google Scholar] [CrossRef]
- Do, C.; Kuleshov, Y. Multi-hazard Tropical Cyclone Risk Assessment for Australia. Remote Sens. 2023, 15, 795. [Google Scholar] [CrossRef]
- Park, J.K.; Kim, B.S.; Jung, W.S.; Kim, E.B.; Lee, D.G. Change in Statistical Characteristics of Typhoon Affecting the Korean Peninsula. Atmosphere 2006, 16, 1–17. [Google Scholar]
- Choi, K.S.; Cha, Y.M.; Kim, T.R. Decadal Change of Frequency in Korea Landfalling Tropical Cyclone Activity. J. Korean Earth Sci. Soc. 2012, 33, 49–58. [Google Scholar] [CrossRef]
- Ahn, S.H.; Park, K.J.; Kim, J.Y.; Kim, B.J. The Characteristics of the Frequency and Damage for Meteorological Disasters in Korea. J. Korean Soc. Hazard Mitig. 2015, 15, 133–144. [Google Scholar] [CrossRef]
- Na, H.N.; Jung, W.S. A Study on Improving the Prediction Accuracy of a Typhoon Disaster Prevention Model Part III: Sensitivity of the WRF Model to Soil Data. J. Korean Soc. Atmos. Environ. 2021, 37, 248–262. [Google Scholar] [CrossRef]
- Na, H.N.; Jung, W.S. Radius of Maximum Wind Speed Suitable for Typhoons Affecting the Korean Peninsula Part I: Evaluation of Prior Experiences Formula. J. Korean Soc. Atmos. Environ. 2022, 38, 88–99. [Google Scholar] [CrossRef]
- Na, H.N. Development of a Regional Customized Risk Assessment and Prediction-Diagnosis System Based on Impact-Based Forecasting for the Prevention of Typhoon-Related Multi-Hazard Meteorological Disaster—Typhoon Ready System. Ph.D. Thesis, Inje University, Gimhae, Republic of Korea, 2023. [Google Scholar]
- Kang, S.W.; Jun, K.C.; Bang, G.H.; Park, K.S. Empirical relationship between central pressure and maximum sustained wind for tropical cyclones in Northeast Asian Sea. J. Korean Meteorol. Soc. 2002, 38, 523–530. [Google Scholar]
- World Meteorological Organization. Manual on Estimation of Probable Maximum Precipitation (PMP); WMO-No. 1045; World Meteorological Organization: Geneva, Switzerland, 2009; Available online: https://community.wmo.int/en/bookstore/manual-estimation-probable-maximum-precipitation-pmp (accessed on 10 October 2024).
- Hershfield, D.M. Estimating the probable maximum precipitation. J. Hydraul. Div. 1961, 87, 99–106. [Google Scholar] [CrossRef]
- Center for Watershed Protection. Impacts of Impervious Cover on Aquatic System; Watershed Protection Research Monograph No. 1; Center for Watershed Protection: Fulton, MD, USA, 2003; Available online: https://owl.cwp.org/mdocs-posts/impacts-of-impervious-cover-on-aquatic-systems-2003/ (accessed on 10 October 2024).
- Shim, J.H.; Kim, J.E. An Analysis on the Interrelationship between Land-use Characteristics and Damages caused by Natural Hazards. J. Korea Acad.-Ind. Coop. Soc. 2012, 13, 4139–4325. [Google Scholar] [CrossRef]
- Choi, J.Y. Effects of Imperviousness on River Water Quality. Seoul Stud. 2004, 5, 45–58. [Google Scholar]
- Park, T.S.; Yeo, C.G.; Choi, M.H.; Lee, S.O. Flood Damage Index regarding Regional Flood Damage Characteristics. J. Korean Soc. Civ. Eng. B 2010, 30, 361–366. [Google Scholar]
- Islam, R.; Lee, C.Y.; Mandli, K.T.; Takagi, H. A new tropical cyclone surge index incorporating the effects of coastal geometry, bathymetry and storm information, nature. Sci. Rep. 2021, 11, 16747. [Google Scholar] [CrossRef]
- Ku, H.Y.; Kim, T.Y.; Song, Y.I. Coastal vulnerability assessment of sea-level rise associated with typhoon-induced surges in South Korea. Ocean Coast. Manag. 2021, 213, 105884. [Google Scholar] [CrossRef]
- Pan, G.; Chai, F.; Tang, D.L.; Wang, D.X. Marine phytoplankton biomass responses to typhoon events in the South China Sea based on physical-biogeochemical model. Ecol. Model. 2017, 356, 38–47. [Google Scholar] [CrossRef]
- Wang, C.C.; Kuo, H.C.; Chen, Y.H.; Chen, S.H.; Tsubaki, K. A Decade after Typhoon Morakot (2009): What Have We Learned about its Physics and Predictability? Weather Forecast. 2022, 37, 2161–2181. [Google Scholar] [CrossRef]
- Na, H.N.; Jung, W.S. Construction of Typhoon Impact Based Forecast in Korea -Current Status and Composition-. J. Environ. Sci. Int. 2023, 32, 543–553. [Google Scholar] [CrossRef]
Administrative | Percentage of Impermeable | Administrative | Percentage of Impermeable |
---|---|---|---|
Seoul | 53.605 | Gangwon | 2.847 |
Busan | 83.587 | Gyeong-gi | 11.844 |
Ulsan | 21.019 | Gyeongnam | 15.844 |
Daegu | 89.631 | Gyeongbuk | 4.488 |
Daejeon | 25.027 | Jeonnam | 6.664 |
Gwangju | 41.091 | Jeonbuk | 7.344 |
Incheon | 19.273 | Chungnam | 8.084 |
Sejong | 12.510 | Chungbuk | 6.510 |
Jeju | 8.801 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, H.; Jung, W.-S. A Study on the Pre-Survey and Plan for the Establishment of the Korean Typhoon Impact-Based Forecast. Atmosphere 2024, 15, 1236. https://doi.org/10.3390/atmos15101236
Na H, Jung W-S. A Study on the Pre-Survey and Plan for the Establishment of the Korean Typhoon Impact-Based Forecast. Atmosphere. 2024; 15(10):1236. https://doi.org/10.3390/atmos15101236
Chicago/Turabian StyleNa, Hana, and Woo-Sik Jung. 2024. "A Study on the Pre-Survey and Plan for the Establishment of the Korean Typhoon Impact-Based Forecast" Atmosphere 15, no. 10: 1236. https://doi.org/10.3390/atmos15101236
APA StyleNa, H., & Jung, W. -S. (2024). A Study on the Pre-Survey and Plan for the Establishment of the Korean Typhoon Impact-Based Forecast. Atmosphere, 15(10), 1236. https://doi.org/10.3390/atmos15101236