Rainfall Enhancement Downwind of Hills Due to Stationary Waves on the Melting Level and the Extreme Rainfall of December 2015 in the Lake District of Northwest England
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gravity Wave Model
2.2. Case Study
2.2.1. Interpretation of Gravity Wave Structure from Model Cross Sections
2.2.2. Precipitation Trajectories and Enhancement
2.2.3. Near-Isothermal Layer
2.2.4. Rainfall Focusing
2.3. Theory
3. Results
3.1. Validation of Analytical Derivation
3.2. Applcation of Equations to Case Study
4. Discussion and Summary
4.1. Interpretation of Enhancement Equations
4.2. Diabatic Effects
4.3. Gravity Wave Model Limitations
- Linearity: The linearised governing equations are theoretically most valid for low hills, but still form a reasonable approximation when the Froude number exceeds one [41]. In this case study, the Froude number for the lower layers, given by U/NH (where H is hill height), is approximately three. However, the linear treatment of trapped waves can still significantly underestimate the amplitude of shortwave components [21], whilst non-linear features associated with trapped waves, such as rotors, can lead to unsteadiness.
- Vertical uniformity: The equations assume that U and N are invariant with height. According to Shutts [42], the equations may be applied to an atmosphere with varying U and N if these parameters change sufficiently gradually relative to the dominant gravity wave wavelength. For the case study, the winds show little variation up to 8000 m, but the stability (N) does vary, which may compromise accuracy.
- Two-dimensionality: The model treats hills as infinite ridges regardless of their extent perpendicular to the cross section. It fails to account for effects from orography outside the cross-section, such as lateral wave deflection [41,43]. Additionally, wind components normal to the cross section may induce lower boundary vertical velocities that differ from the two-dimensional model, especially where terrain varies most in this direction.
4.4. Summary
- A small temperature lapse around the melting level, ideally isothermal;
- A large ratio of rain fall speed to snow fall speed;
- Strong descent at (and, therefore, strong upward slope of) the melting level;
- Strong downslope wind at the surface;
- Proximity of the melting level to the ground.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of Precipitation Enhancement Equations
References
- Roe, G.H. Orographic precipitation. Annu. Rev. Earth Planet. Sci. 2005, 33, 645–671. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, RG1001. [Google Scholar] [CrossRef]
- Colle, B.A.; Smith, R.B.; Wesley, D.A. Theory, observations, and predictions of orographic precipitation. In Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F.K., de Wekker, S.F.J., Snyder, B.J., Eds.; Springer: New York, NY, USA, 2013; pp. 291–344. [Google Scholar]
- Bergeron, T. On the low-level redistribution of atmospheric water caused by orography. In Proceedings of the International Conference on Cloud Physics, Tokyo, Japan, 24 May–1 June 1965; pp. 96–100. [Google Scholar]
- Lean, H.W.; Browning, K.A. Quantification of the importance of wind drift to the surface distribution of orographic rain on the occasion of the extreme Cockermouth flood in Cumbria. Q. J. R. Meteorol. Soc. 2013, 139, 1342–1353. [Google Scholar] [CrossRef]
- Stoelinga, M.T.; Stewart, R.E.; Thompson, G.; Thériault, J.M. Microphysical processes within winter orographic cloud and precipitation systems. In Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F.K., de Wekker, S.F.J., Snyder, B.J., Eds.; Springer: New York, NY, USA, 2013; pp. 345–408. [Google Scholar]
- Browning, K.A. Structure, mechanism and prediction of orographically enhanced rain in Britain. In Orographic Effects in Planetary Flows; Hide, R., White, P.W., Eds.; GARP Publications Series No. 23; WMO: Geneva, Switzerland, 1980; pp. 85–114. [Google Scholar]
- Hill, F.F.; Browning, K.A.; Bader, M.J. Radar and rain gauge observations of orographic rain over south Wales. Q. J. R. Meteorol. Soc. 1981, 107, 643–670. [Google Scholar] [CrossRef]
- Browning, K.A.; Hill, F.F.; Pardoe, C.W. Structure and mechanism of precipitation and effect of orography in a wintertime warm sector. Q. J. R. Meteorol. Soc. 1974, 100, 309–330. [Google Scholar] [CrossRef]
- Robichaud, A.J.; Austin, G.L. On the modelling of warm orographic rain by the seeder–feeder mechanism. Q. J. R. Meteorol. Soc. 1988, 114, 967–988. [Google Scholar]
- Hobbs, P.V.; Easter, R.C.; Fraser, A. A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part II. Microphysics. J. Atmos. Sci. 1973, 47, 813–823. [Google Scholar] [CrossRef]
- Bruintjes, R.T.; Clark, T.L.; Hall, W.D. Interactions between topographic airflow and cloud/precipitation development during the passage of a winter storm in Arizona. J. Atmos. Sci. 1994, 57, 48–67. [Google Scholar] [CrossRef]
- Colle, B.A. Two-dimensional idealized simulations of the impact of multiple windward ridges on orographic precipitation. J. Atmos. Sci. 2008, 65, 509–523. [Google Scholar] [CrossRef]
- Stout, J.E.; Lin, Y.-L.; Arya, S.P.S. A theoretical investigation of the effects of sinusoidal topography on particle deposition. J. Atmos. Sci. 1993, 50, 2533–2541. [Google Scholar] [CrossRef]
- Stout, J.E.; Janowitz, G.S. Particle trajectories above sinusoidal terrain. Q. J. R. Meteorol. Soc. 1997, 123, 1829–1840. [Google Scholar] [CrossRef]
- Minder, J.R.; Durran, D.R.; Roe, G.H. Mesoscale controls on the mountainside snow line. J. Atmos. Sci. 2011, 68, 2107–2127. [Google Scholar] [CrossRef]
- Cullen, M.J.P.; Davies, T.; Mawson, M.H.; James, J.A.; Coulter, S.; Malcolm, A. An overview of numerical methods for the next generation UK NWP and climate model. In Numerical Methods in Atmospheric and Ocean Modelling; Charles, A., Lin, C.A., Laprise, R., Ritchie, H., Eds.; NRC Research Press: Ottawa, ON, Canada, 1997; pp. 425–444. [Google Scholar]
- Ridal, M.; Bazile, E.; Le Moigne, P.; Randriamampianina, R.; Schimanke, S.; Andrae, U.; Berggren, L.; Brousseau, P.; Dahlgren, P.; Edvinsson, L.; et al. CERRA, the Copernicus European Regional Reanalysis system. Q. J. R. Meteorol. Soc. 2024, 150, 3385–3411. [Google Scholar] [CrossRef]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Academic Press: Amsterdam, Netherlands, 2013; Volume 88. [Google Scholar]
- Durran, D.R.; Klemp, J.B. On the effects of moisture on the Brunt-Väisälä Frequency. J. Atmos. Sci. 1982, 39, 2152–2158. [Google Scholar] [CrossRef]
- Durran, D.R. Lee waves and mountain waves. In Encyclopedia of Atmospheric Sciences; Holton, J.R., Curry, J.A., Eds.; Elsevier Science Ltd.: London, UK, 2003; pp. 1161–1170. [Google Scholar]
- Marsh, T.J.; Kirby, C.; Muchan, K.; Barker, L.; Henderson, E.; Hannaford, J. The Winter Floods of 2015/2016 in the UK—A Review; Centre for Ecology & Hydrology: Wallingford, UK, 2016; 37p. [Google Scholar]
- Dacre, H.F.; Martinez-Alvarado, O.; Mbengue, C.O. Linking atmospheric rivers and warm conveyor belt airflows. J. Hydrometeorol. 2019, 20, 1183–1196. [Google Scholar] [CrossRef]
- Heymsfield, A.J. Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci. 1977, 34, 367–381. [Google Scholar] [CrossRef]
- Vosper, S.B. Moutain waves and wakes generated by South Georgia: Implications for drag parametrization. Q. J. R. Meteorol. Soc. 2015, 141, 2813–2827. [Google Scholar] [CrossRef]
- Clark, T.L.; Peltier, W.R. On the evolution and stability of finite-amplitude mountain waves. J. Atmos. Sci. 1977, 34, 1715–1730. [Google Scholar] [CrossRef]
- Grant, L.D.; van den Heever, S.C.; Haddad, Z.S.; Bukowski, J.; Marinescu, P.J.; Storer, R.L.; Stephens, G.L. A linear relationship between vertical velocity and condensation processes in deep convection. J. Atmos. Sci. 2022, 79, 449–466. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, J. Algorithms for Doppler spectral density data quality control and merging for the Ka-Band solid-state transmitter cloud radar. Remote Sens. 2019, 11, 209. [Google Scholar] [CrossRef]
- Makino, A.; Shiina, T.; Ota, M. Precipitation classification system using vertical doppler radar based on neural networks. Radio Sci. 2019, 54, 20–33. [Google Scholar] [CrossRef]
- Clough, S.A.; Franks, R.A.A. The evaporation of frontal and other stratiform precipitation. Q. J. R. Meteorol. Soc. 1991, 117, 1057–1080. [Google Scholar] [CrossRef]
- Best, A.C. The size distribution of raindrops. Q. J. R. Meteorol. Soc. 1950, 76, 16–36. [Google Scholar] [CrossRef]
- Gunn, R.; Kinzer, G.D. The terminal velocity of fall for water drops in stagnant air. J. Meteorol. 1949, 6, 243–248. [Google Scholar] [CrossRef]
- Yuter, S.E.; Kingsmill, D.E.; Nance, L.B.; Löffler-Mang, M. Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteorol. 2006, 45, 1450–1464. [Google Scholar] [CrossRef]
- Findeisen, W. Die Entstehung der 0C Isothermie und die Fraktocumulus-Bildung unter Nimbostratus. Meteorol. Z. 1940, 57, 49–54. [Google Scholar]
- Webster, S.; Brown, A.R.; Cameron, D.R.; Jones, C.P. Improving the representation of orography in the Met Office Unified Model. Q. J. R. Meteorol. Soc. 2003, 129, 1989–2010. [Google Scholar] [CrossRef]
- Thomson, W. XLII. On stationary waves in flowing water. Part I. Philos. Mag. Ser 1886, 22, 353–357. [Google Scholar] [CrossRef]
- Eliassen, A. On the vertical circulation in frontal zones. Geofys. Publ. 1962, 24, 147–160. [Google Scholar]
- Atlas, D.; Tatehira, R.; Srivastava, R.C.; Marker, W.; Carbone, R.E. Precipitation-induced mesoscale wind perturbations in the melting layer. Q. J. R. Meteorol. Soc. 1969, 95, 544–560. [Google Scholar] [CrossRef]
- Unterstrasser, S.; Zängl, G. Cooling by melting precipitation in Alpine valleys: An idealized numerical modelling study. Q. J. R. Meteorol. Soc. 2006, 132, 1489–1508. [Google Scholar] [CrossRef]
- Wexler, R.; Reed, R.J.; Honig, J. Atmospheric cooling by melting snow. Bull. Am. Meteorol. Soc. 1954, 35, 48–51. [Google Scholar] [CrossRef]
- Smith, R.B. Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus 1980, 32, 348–364. [Google Scholar] [CrossRef]
- Shutts, G.J. Stationary gravity-wave structure in flows with directional wind shear. Q. J. R. Meteorol. Soc. 1998, 124, 1421–1442. [Google Scholar] [CrossRef]
- Scorer, R.S. Airflow over an isolated hill. Q. J. R. Meteorol. Soc. 1956, 82, 75–81. [Google Scholar] [CrossRef]
Parameter | Cross Section I | Cross Section II |
---|---|---|
wm | −1.2 | −0.7 |
wg | 0.0 | −0.2 |
wr | −6.0 | −6.0 |
ws | −1.5 | −1.5 |
D | −0.15 | −0.15 |
γ | 0.075 | 0.075 |
Eg Equation (5) | 3.2 | 2.9 |
Eg Equation (6) | 4.0 | 4.0 |
Eg from trajectories | 4.0 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carroll, E. Rainfall Enhancement Downwind of Hills Due to Stationary Waves on the Melting Level and the Extreme Rainfall of December 2015 in the Lake District of Northwest England. Atmosphere 2024, 15, 1252. https://doi.org/10.3390/atmos15101252
Carroll E. Rainfall Enhancement Downwind of Hills Due to Stationary Waves on the Melting Level and the Extreme Rainfall of December 2015 in the Lake District of Northwest England. Atmosphere. 2024; 15(10):1252. https://doi.org/10.3390/atmos15101252
Chicago/Turabian StyleCarroll, Edward. 2024. "Rainfall Enhancement Downwind of Hills Due to Stationary Waves on the Melting Level and the Extreme Rainfall of December 2015 in the Lake District of Northwest England" Atmosphere 15, no. 10: 1252. https://doi.org/10.3390/atmos15101252
APA StyleCarroll, E. (2024). Rainfall Enhancement Downwind of Hills Due to Stationary Waves on the Melting Level and the Extreme Rainfall of December 2015 in the Lake District of Northwest England. Atmosphere, 15(10), 1252. https://doi.org/10.3390/atmos15101252