Simultaneous Catalytic Oxidation of Benzene and Toluene over Pd-CeZrOx Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Raw Materials
2.2. Synthesis of Catalysts
2.2.1. Synthesis of CeZrOx
2.2.2. Impregnation of CeZrOx
2.3. Materials Characterization
2.4. Catalytic Activity Evaluation
3. Results and Discussion
3.1. Structural Characterization
3.2. Evaluation of Catalytic Activity
3.2.1. Effect of Different Impregnation Amounts on Catalytic Activity
3.2.2. Effect of Different Preparation Methods on Catalytic Activity
3.3. Acidity of Catalysts
3.4. Characterization of Oxygen Vacancies
3.5. Analysis of Valence States
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Zhang, Z.; Yuan, K.; Dang, D.; Jin, P.; Han, X.; Ge, Q. Catalytic Oxidation Degradation of Volatile Organic Compounds (VOCs)—A Review. Rev. Inorg. Chem. 2024, 44, 209–229. [Google Scholar] [CrossRef]
- Ding, S.; Wu, S.; Fang, N.; Chu, Y.; Wang, P.; Ding, L. Design and Synthesis of Porous Nano-Confined Catalysts for VOCs Oxidation: A Critical Review Based on Pollutant Sorts. Sep. Purif. Technol. 2025, 352, 128158. [Google Scholar] [CrossRef]
- Gao, W.; Tang, X.; Yi, H.; Jiang, S.; Yu, Q.; Xie, X.; Zhuang, R. Mesoporous Molecular Sieve-Based Materials for Catalytic Oxidation of VOC: A Review. J. Environ. Sci. 2023, 125, 112–134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Wei, L.; Liu, Y.; Dai, H.; Deng, J. Recent Progress on VOC Pollution Control via the Catalytic Method. Chin. J. Catal. 2024, 61, 71–96. [Google Scholar] [CrossRef]
- Meng, F.; Tang, X.; Kadja, G.T.M.; Yi, H.; Zhao, S.; Wu, W.; Zhang, Y.; Gao, F.; Yu, Q. A Systematic Review with Improving Activity and Stability in VOCs Elimination by Oxidation of Noble Metals: Starting from Active Sites. Sep. Purif. Technol. 2025, 354, 129222. [Google Scholar] [CrossRef]
- Guo, X.; Shi, Y.; Zhou, A.; Wang, Y.; Zhou, R. Challenging Design of Highly Active Pt/CeO2–TiO2/ZSM-5 Catalysts for VOCs Low-Temperature Removal. Mater. Today Sustain. 2024, 27, 100938. [Google Scholar] [CrossRef]
- Zhou, B.; Ke, Q.; Wen, M.; Ying, T.; Cui, G.; Zhou, Y.; Gu, Z.; Lu, H. Catalytic Combustion of Toluene on Pt/Al2O3 and Pd/Al2O3 Catalysts with CeO2, CeO2–Y2O3 and La2O3 as Coatings. J. Rare Earths 2023, 41, 1171–1178. [Google Scholar] [CrossRef]
- Cui, J.; Cui, Y.; Tan, J.; Zhang, H.; Gu, M.; Huang, L. Efficient Catalytic Oxidation of VOCs by a Pd-Pt/SiO2 Catalyst: The Cooperative Catalysis of Dual Metal Sites. J. Environ. Chem. Eng. 2024, 12, 111930. [Google Scholar] [CrossRef]
- Zhou, W.; Li, H.; Song, B.; Ma, W.; Liu, Z.; Wang, Z.; Xu, Z.; Meng, L.; Wang, Y.; Qin, X.; et al. Catalytic Oxidation Mechanism of Toluene over CexMn1−xO2: The Role of Oxygen Vacancies in Adsorption and Activation of Toluene. Langmuir 2023, 39, 8503–8515. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, C.; Wang, Z.; Ji, J.; Wan, H.; Zou, W.; Tong, Q.; Sun, J.; Dong, L.; Chen, Y.-W. Enhanced Low-Temperature Catalytic Performance for Toluene Combustion of CeO2-Supported Pt-Ir Alloy Catalysts. Appl. Surf. Sci. 2022, 580, 152278. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Ma, Y.; Xu, M.; Zhang, J.; Zhu, Y.; Ding, J.; Zhu, L.; Ma, J.; Ji, W.; et al. Electron Donation Promotes the Dual Activation of Lattice Oxygen and Molecular Oxygen: The Pt-Pd/CeO2 Catalyst Efficiently Catalyzes Toluene. J. Catal. 2023, 428, 115133. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, W.; Zhang, N.; Li, Y.; Liao, Y. Facile Synthesis of Ceria–Zirconia Solid Solutions with Cubic–Tetragonal Interfaces and Their Enhanced Catalytic Performance in Diesel Soot Oxidation. J. Catal. 2019, 377, 98–109. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhao, Z.; Yang, H.; He, J.; Suib, S.L. Surface Redox Characters and Synergetic Catalytic Properties of Macroporous Ceria-Zirconia Solid Solutions. J. Hazard. Mater. 2019, 366, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.-F.; Ren, T.-Z.; Agula, B.; Liu, Y.; Yuan, Z.-Y. Mesoporous CexZr1−xO2 Solid Solutions Supported CuO Nanocatalysts for Toluene Total Oxidation. J. Ind. Eng. Chem. 2014, 20, 3303–3312. [Google Scholar] [CrossRef]
- Wang, J.; Lai, X.; Zhang, H.; Zhou, X.; Lin, T.; Wang, J.; Chen, Y. Low-Temperature Toluene Oxidation on Ag/CexZr1−xO2 Monolithic Catalysts: Synergistic Catalysis of Silver and Ceria-Zirconia. Combust. Flame 2023, 248, 112577. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, S.; Huang, Z.; Xu, H.; Shen, W. Insights into Enhancing SO2 Tolerance for Catalytic Combustion of Toluene over Sulfated CeZrOx Supported Platinum Catalysts. Colloids Surf. A Physicochem. Eng. Asp. 2023, 669, 131539. [Google Scholar] [CrossRef]
- Meng, F.; Li, X.; Zhang, P.; Yang, L.; Liu, S.; Li, Z. A Facile Approach for Fabricating Highly Active ZrCeZnO in Combination with SAPO-34 for the Conversion of Syngas into Light Olefins. Applied Surface Science 2021, 542, 148713. [Google Scholar] [CrossRef]
- Mikhail, M.; Da Costa, P.; Amouroux, J.; Cavadias, S.; Tatoulian, M.; Ognier, S.; Gálvez, M.E. Electrocatalytic Behaviour of CeZrOx -Supported Ni Catalysts in Plasma Assisted CO2 Methanation. Catal. Sci. Technol. 2020, 10, 4532–4543. [Google Scholar] [CrossRef]
- Kunkes, E.L.; Gürbüz, E.I.; Dumesic, J.A. Vapour-Phase C–C Coupling Reactions of Biomass-Derived Oxygenates over Pd/CeZrOx Catalysts. J. Catal. 2009, 266, 236–249. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, M.; Xu, C.; Liu, S.; Zhang, X.; Chen, Y. Ultrasonic-Assisted Fabrication and Catalytic Activity of CeZrAl Oxide-Supported Pd for the Purification of Gasohol Exhaust. Chin. J. Catal. 2013, 34, 751–757. [Google Scholar] [CrossRef]
- Wang, M.; Kim, S.Y.; Men, Y.; Shin, E.W. Influence of Metal-Support Interactions on Reaction Pathways over Ni/CeZrOx–Al2O3 Catalysts for Ethanol Steam Reforming. Int. J. Hydrogen Energy 2022, 47, 33765–33780. [Google Scholar] [CrossRef]
- Xu, H.; Feng, X.; Liu, S.; Wang, Y.; Sun, M.; Wang, J.; Chen, Y. Promotional Effects of Titanium Additive on the Surface Properties, Active Sites and Catalytic Activity of W/CeZrOx Monolithic Catalyst for the Selective Catalytic Reduction of NOx with NH3. Appl. Surf. Sci. 2017, 419, 697–707. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Liu, X.; Lian, Y.; Niu, X.; Zhu, Y. Excellent Low-Temperature Activity for Oxidation of Benzene Serials VOCs over Hollow Pt/CoMn2O4 Sub-Nanosphere: Synergistic Effect between Pt and CoMn2O4 on Improving Oxygen Activation. Chem. Eng. J. 2023, 473, 145478. [Google Scholar] [CrossRef]
- Ma, S.; Hou, Y.; Li, Y.; Ding, X.; Yang, Y.; Tian, J.; Cui, Y.; Huang, Z. Regulation of A-Site Cations in AMn2Ox Spinel Catalysts on the Deep Oxidation of Light Alkanes VOCs. Fuel 2023, 334, 126785. [Google Scholar] [CrossRef]
- Sellick, D.R.; Aranda, A.; García, T.; López, J.M.; Solsona, B.; Mastral, A.M.; Morgan, D.J.; Carley, A.F.; Taylor, S.H. Influence of the Preparation Method on the Activity of Ceria Zirconia Mixed Oxides for Naphthalene Total Oxidation. Appl. Catal. B Environ. 2013, 132–133, 98–106. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, H.; Hu, Q.; Huang, Y.; Wang, X.; Wang, Y.; Wang, F. Application of Microimpinging Stream Reactor Coupled with Ultrasound in Cu/CeZrOx Solid Solution Catalyst Preparation for CO2 Hydrogenation to Methanol. Renew. Energy 2023, 202, 834–843. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Yin, X.; Wang, L.; Li, S.; Wang, J.; Chen, Y. Engineering Excellent Pd/CeO2-ZrO2-Al2O3 Catalyst with Abundant Oxygen Vacancies by Pr Surface Modification for Eliminating NO and C3H8. J. Alloys Compd. 2023, 938, 168585. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Dan, Y.; Deng, J.; Wang, J.; Xiong, L.; Chen, Y. Design and Synthetize Highly Active Pd-Only Three-Way Catalyst by Optimizing the Reducibility of CeO2-ZrO2-Al2O3 Support. Mol. Catal. 2020, 482, 110696. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, X.; Liu, J.; Li, X. The NO Oxidation Performance over Cu/Ce0.8Zr0.2O2 Catalyst. Surf. Interfaces 2017, 6, 103–109. [Google Scholar] [CrossRef]
- Kang, X.; Dong, G.; Dong, T. Oxygen Vacancy Defect Engineering of Heterophase Junction TiO2: Interfacial/Surface Oxygen Vacancies Coadjust the Photocatalytic ROS Production. ACS Appl. Energy Mater. 2023, 6, 1025–1036. [Google Scholar] [CrossRef]
- Sun, W.; Li, X.; Mu, J.; Fan, S.; Yin, Z.; Wang, X.; Qin, M.; Tadé, M.; Liu, S. Improvement of Catalytic Activity over Mn-Modified CeZrO Catalysts for the Selective Catalytic Reduction of NO with NH3. J. Colloid Interface Sci. 2018, 531, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lu, Y.; Song, C.; Ma, Z.; Xing, S.; Gao, Y. A Novel Redox-Precipitation Method for the Preparation of α-MnO2 with a High Surface Mn4+ Concentration and Its Activity toward Complete Catalytic Oxidation of o-Xylene. Catal. Today 2013, 201, 32–39. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Liu, M.; Ma, Z. Complete Catalytic Oxidation of O-Xylene over Mn–Ce Oxides Prepared Using a Redox-Precipitation Method. Catal. Today 2010, 153, 170–175. [Google Scholar] [CrossRef]
- Li, L.; Zhang, N.; He, H.; Zhang, G.; Song, L.; Qiu, W. Shape-Controlled Synthesis of Pd Nanocrystals with Exposed {110} Facets and Their Catalytic Applications. Catal. Today 2019, 327, 28–36. [Google Scholar] [CrossRef]
- Wang, G.; You, R.; Meng, M. An Optimized Highly Active and Thermo-Stable Oxidation Catalyst Pd/Ce–Zr–Y/Al2O3 Calcined at Superhigh Temperature and Used for C3H8 Total Oxidation. Fuel 2013, 103, 799–804. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Zheng, Z.; Zhang, Y.; Li, K.; Chen, T.; Guo, D.; Cao, H.; Zhan, R.; Lin, H. Comparative Study on Properties of Pd-Ce-Zr Catalysts Synthesized by Flame Spray Pyrolysis and Solution Combustion: Application for Methane Catalytic Oxidation in Electric Field. Appl. Surf. Sci. 2021, 566, 150536. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Liu, G.; Wang, L.; Pan, Z. Ce-Doped SBA-15 Supported Pd Catalyst for Efficient Hydrogenation of 2-Ethyl-Anthraquinone. Appl. Surf. Sci. 2023, 616, 156515. [Google Scholar] [CrossRef]
- Ruzzi, P.; Salusso, D.; Baravaglio, M.; Szeto, K.C.; De Mallmann, A.; Jiménez, L.G.; Godard, C.; Benayad, A.; Morandi, S.; Bordiga, S.; et al. Supported PdZn Nanoparticles for Selective CO2 Conversion, through the Grafting of a Heterobimetallic Complex on CeZrOx. Appl. Catal. A Gen. 2022, 635, 118568. [Google Scholar] [CrossRef]
- Deka, D.J.; Pihl, J.A.; Thomas, C.R.; Partridge, W.P. Intra-Catalyst CH4 Oxidation Pathways on a Pd/Al2O3/CeZrOx-Based Commercial Catalyst and Implications on NOx Conversion Profiles for a Natural Gas Vehicle Exhaust under Lambda Modulation. Chem. Eng. J. 2023, 472, 144803. [Google Scholar] [CrossRef]
Sample | SSA (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
1.0Pd-CeZrOx-CASG | 13.08 | 0.04 | 10.53 |
1.0Pd-CeZrOx-CTAB | 72.08 | 0.06 | 3.41 |
1.0Pd-CeZrOx-PM | 78.24 | 0.07 | 3.39 |
Sample | Catalytic Benzene Activity (°C) | Catalytic Toluene Activity (°C) | ||
---|---|---|---|---|
T80 | T100 | T80 | T100 | |
1.0Pd-CeZrOx-CASG | 207 | 250 | 137 | 250 |
1.0Pd-CeZrOx-CTAB | 249 | 350 | 242 | 300 |
1.0Pd-CeZrOx-PM | 237 | 300 | 230 | 300 |
Sample | NH3 Desorption Temperature (°C) | Proportion of Acid Sites (%) | ||
---|---|---|---|---|
Weak | Moderate | Weak | Moderate | |
1.0Pd-CeZrOx-CASG | 95 | 277 | 88% | 12% |
1.0Pd-CeZrOx-CTAB | 100 | 274 | 80% | 20% |
1.0Pd-CeZrOx-PM | 95 | 273 | 82% | 18% |
Sample | Pd (at.%) | Ce (at.%) | Zr (at.%) | O (at.%) | Pd2+/Pdtotal | Ce3+/Cetotal | Ov/(Ov + Oads + Olatt) |
---|---|---|---|---|---|---|---|
1.0Pd-CeZrOx-CTAB | 5.56 | 5.98 | 13.38 | 75.07 | 69.04% | 30.15% | 23.61% |
1.0Pd-CeZrOx-CASG | 5.51 | 5.93 | 12.64 | 75.92 | 58.45% | 22.37% | 14.52% |
1.0Pd-CeZrOx-PM | 6.61 | 6.45 | 14.51 | 72.43 | 70.00% | 25.64% | 21.24% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, X.; Wang, Y.; Hao, M.; Li, Z.; Liu, D.; Yan, K. Simultaneous Catalytic Oxidation of Benzene and Toluene over Pd-CeZrOx Catalysts. Atmosphere 2024, 15, 1301. https://doi.org/10.3390/atmos15111301
Xing X, Wang Y, Hao M, Li Z, Liu D, Yan K. Simultaneous Catalytic Oxidation of Benzene and Toluene over Pd-CeZrOx Catalysts. Atmosphere. 2024; 15(11):1301. https://doi.org/10.3390/atmos15111301
Chicago/Turabian StyleXing, Xin, Yixin Wang, Meiping Hao, Zhe Li, Dandan Liu, and Kezhou Yan. 2024. "Simultaneous Catalytic Oxidation of Benzene and Toluene over Pd-CeZrOx Catalysts" Atmosphere 15, no. 11: 1301. https://doi.org/10.3390/atmos15111301
APA StyleXing, X., Wang, Y., Hao, M., Li, Z., Liu, D., & Yan, K. (2024). Simultaneous Catalytic Oxidation of Benzene and Toluene over Pd-CeZrOx Catalysts. Atmosphere, 15(11), 1301. https://doi.org/10.3390/atmos15111301