Moss Technique Used to Monitor the Atmospheric Deposition of Trace Elements on the Territory of the Ryazan Region, Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Data Analyses
- The Ryazan agglomeration, including Ryazan District;
- The western part of the territory of the Ryazan Region between two large thermal power plants;
- The southern part of the Ryazan Region (Miloslavsky and Alexandro-Nevsky districts);
- The eastern part of the Ryazan Region (Sasovsky District).
- -
- An oil refinery, located on an area of more than 900 hectares, processing about 17 million tons of oil per year and generating 85% of the emissions from all enterprises in Ryazan, the composition of which includes an increased content of Mn, Fe, Cr and Ni;
- -
- The largest enterprise of sheet glass and specialized glass products including Cg, Al, Pb, Fe, Mn, Ni, Ca and Cu as part of its atmospheric air emissions;
- -
- An enterprise specializing in processing lead and copper secondary raw materials—spent acid batteries and lead, copper, brass and bronze scrap of all types—which generates more than 2 t of Pb per year and more than 1 t of Ca as part of its emissions into the atmospheric air;
- -
- Enterprises of the 2nd category of hazard: production of non-ferrous metals—Cg, Mn, Fe, Al; production of radio-electronic products—Cg, Mn, Fe, Ni, silicon, tin, fluorine, etc.; as well as the production of electronic products—Cg, Mn, Fe, Ni.
- -
- Organochlorine reagents are used to modify the structure of hydrocarbons in the oil refining process;
- -
- Organobromine biocides are used to prevent biological contamination, equipment corrosion and scale formation on heat exchange surfaces and in pipelines.
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markert, B.; Wuenschmann, S.; Fraenzle, S.; Wappelhorst, O.; Weckert, V.; Breulmann, G.; Djingova, R.; Herpin, U.; Lieth, H.; Schroder, W.; et al. On the road from environmental biomonitoring to human health aspects: Monitoring atmospheric heavy metal deposition by epiphytic/epigeic plants: Present status and future needs. Int. J. Environ. Pollut. 2008, 32, 486–498. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Bin Emran, T.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Kuchumov, V.V.; Ljapkalo, A.A.; Medvedeva, O.V. Aktual’nost’ Problemy Profilaktiki Zlokachestvennyh Novoobrazovanij dlja Rjazanskoj Oblasti Rossijskij Mediko-Biologicheskij Vestnik Imeni Akademika I.P. Pavlova. 2014 [Relevance of the Problem of Prevention of Malignant Neoplasms in the Ryazan Region. Russian Medical and Biological Bulletin named after Academician I.P. Pavlova]. Available online: https://cyberleninka.ru/article/n/aktualnost-problemy-profilaktiki-zlokachestvennyh-novoobrazovaniy-dlya-ryazanskoy-oblasti (accessed on 2 September 2024).
- Frontasyeva, M.V.; Steinnes, E.; Harmens, H. Monitoring long-term and large-scale deposition of air pollutants based on moss analysis. Biomonitoring of Air Pollution Using Mosses and Lichens: Passive and Active Approach. In State of the Art and Perspectives; Aničić Urošević, M., Ed.; Springer Nature: New York, NY, USA, 2016; 51p, ISBN 9781536100518. [Google Scholar]
- Aleksiayenak, Y.; Marina Frontasyeva, M. A ten-year biomonitoring study of atmospheric deposition of trace elements at the territory of the Republic of Belarus. Ecol. Chem. Eng. S 2019, 26, 455–464. Available online: https://sciendo.com/article/10.1515/eces-2019-0034 (accessed on 10 October 2024). [CrossRef]
- Vergel, K.; Zinicovscaia, I.; Yushin, N.; Chaligava, O.; Nekhoroshkov, P.; Grozdov, D. Moss Biomonitoring of Atmospheric Pollution with Trace Elements in the Moscow Region, Russia. Toxics 2022, 10, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Vergel, K.; Zinicovscaia, I.; Yushin, N.; Gundorina, S. Assessment of atmospheric deposition in Central Russia using moss biomonitors, neutron activation analysis and GIS technologies. J. Radioanal. Nucl. Chem. 2020, 325, 807–816. [Google Scholar] [CrossRef]
- Steinnes, E.; Uggerud, H.T.; Pfaffhuber, K.A.; Berg, T. Atmospheric Deposition of Heavy Metals in Norway. National Moss Survey 2015. NILU Rapport. 2017; 56p. Available online: https://www.nilu.no/wp-content/uploads/dnn/28-2016-Atmospheric-deposition-of-heavy-metals-in-Norway-HTU-KAP.pdf (accessed on 2 September 2024).
- Harmens, H.; Frontasyeva, M. Heavy Metals, Nitrogen and POPs in European Mosses: 2020 Survey. Monitoring Manual International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops. Available online: https://icpvegetation.ceh.ac.uk/sites/default/files/ICP%20Vegetation%20moss%20monitoring%20manual%202020.pdf (accessed on 2 September 2024).
- Frontasyeva, M. Neutron activation analysis for the Life Sciences: A review. Phys. Part. Nucl. 2011, 42, 332–378. (In English) [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.; Participants of the Moss Survey. European Atlas: Spartial and Temporal Trends in Heavy Metal Accumulation in Mosses in Europe (1990−2005), UNECE ICP Vegetation; Centre for Ecology Hydrology, University of Wales Bangor: Bangor, UK, 2008; p. 51. ISBN 978-1-85531-239-5. [Google Scholar]
- Barandovski, L.; Stafilov, T.; Šajn, R.; Bačeva Andonovska, K.; Frontasyeva, M.; Zinicovscaia, I. Assessment of Atmospheric Deposition of Potentially Toxic Elements in Macedonia Using a Moss Biomonitoring Technique. Sustainability 2024, 16, 748. [Google Scholar] [CrossRef]
- Frontasyeva, M.; Participants of the Moss Survey. Mosses as Biomonitors of Air Pollution: 2015/2016 Survey on Heavy Metals, Nitrogen and POPs in Europe and beyond Report of the ICP Vegetation Moss Survey Coordination; Joint Institute for Nuclear Research: Dubna, Russia, 2020; pp. 115–117. ISBN 978-5-9530-0508-1. [Google Scholar]
- Sostojanie Zagrjaznenija Atmosfery v Gorodah na Territorii Rossii za 2022. Ezhegodnik. Federal’noe Gosudarstvennoe Bjudzhetnoe Uchrezhdenie Glavnaja Geofizicheskaja Observatorija im. A.I. Voejkova, Rosgidromet [State of Air Pollution in Cities in Russia for 2022]; 256p. Available online: http://voeikovmgo.ru/images/stories/publications/2023/?C=N;O=D (accessed on 2 September 2024). (In Russian).
- Chaligava, O.; Shetekauri, S.; Badawy Wael, M.; Frontasyeva, M.V.; Zinicovscaia, I.; Shetekauri, T.; Kvlividze, A.; Vergel, K.; Yushin, N. Characterization of trace elements in atmospheric deposition studied by moss biomonitoring in Georgia. Arch. Environ. Contam. Toxicol. 2021, 80, 350–367. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, E.S.; Vinogradov, D.V.; Byshov, N.V.; Baranovskij, A.V.; Blinova, J.A. Ohrana okruzhajushhej sredy i racional’noe ispol’zovanie prirodnyh resursov [Environmental protection and rational use of natural resources] Rjazan’ FGBOU VO RGATU imeni P.A. Kostycheva. 2019; 310p, ISBN 978-5-904308-36-0. (In Russian) [Google Scholar]
- Krivcov, V.A.; Tobratov, S.A.; Komarov, M.M.; Zheleznova, O.S.; Solov’eva, E.A. Prirodnyj potencial landshaftov Ryazanskoj oblasti [Text]: Monogr. Ryaz. gos. un-t imeniS.A. Esenina. – Ryazan’, 2011. – 769 s. [Natural potential of landscapes of the Ryazan region: Monograph ed. by V.A. Krivtsov and S.A. Tobratov] Ryazan. 2011; 769p, ISBN 978-5-88006-700-8. (In Russian) [Google Scholar]
- Doklad ob Jekologicheskoj Situacii v Rjazanskoj Oblasti v 2019 Godu [Report on the Environmental Situation in the Ryazan Region in 2019]. Ministerstvo Prirodopol’zovanija i Jekologii Rjazanskoj Obl (Ministry of Natural Resources and Ecology of the Ryazan Region): Ryazan, Russia, 2019; 170p. Available online: https://minprirody.ryazan.gov.ru/activities/sfery-deyatelnosti/okhrana-okruzhayushchey-sredy/000%20%D0%94%D0%9E%D0%9A%D0%9B%D0%90%D0%94%202019.pdf?utm_source=google.com&utm_medium=organic&utm_campaign=google.com&utm_referrer=google.com (accessed on 2 September 2024). (In Russian)
- Khudyakov, D.S.; Beilina, N.Y.; Trukhina, M.A.; Kozlov, A.M.; Zhagfarov, F.G. Tverdyye goryuchiye iskopayemyye kak istochnik mikroelementov [Solid fossil fuels as a source of microelements]. Khimiya Tverdogo Topliva [Chem. Solid Fuels] 2022, 1, 3–18. [Google Scholar] [CrossRef]
Ryazan Region (Present Work) (n = 63) | Belarus [5] (n = 86) | Moscow Region [6] (n = 156) | Vladimir Region [7] (n = 73) | Norway [8] (n= 229) | |
---|---|---|---|---|---|
Element | Median (min–max) | Median (min–max) | Median (min–max) | Median (min–max) | Median (min–max) |
Na | 239 (100–4900) | 147 (74–537) | 155 (85–508) | 128 (75–942) | 210 (60–800) |
Mg | 1730 (831–7960) | − | 1790 (166–2970) | 1910 (1020–3030) | 1350 (470–3280) |
Al | 1940 (318–17400) | – | 853 (108–2990) | 650 (190–2300) | 460 (100–3050) |
Cl | 170 (43.9–1180) | 188 (55–828) | 85 (10–284) | 68 (9–434) | – |
K | 8790 (4250–19,600) | 3849 (1529–30,070) | 7200 (500–14,300) | 4700 (470–14,000) | 3560 (1770–6400) |
Ca | 5400 (6–14,300) | 2729 (1416–7375) | 4480 (727–9050) | 2100 (210–7800) | 3030 (1820–7230) |
Sc | 0.42 (0.08–5) | 0.11 (0.03–0.72) | 0.17 (0.06–0.52) | 0.06 (0.06–0.59) | 0.09 (0.02–1.4) |
Ti | 147 (6–1990) | - | – | –- | 24 (6–152) |
V | 3.42 (0.74–28.1) | 1.33 (0.40–9.52) | 1.9 (0.32–5.3) | 1.9 (0.95–6.3) | 1.2 (0.3–14) |
Cr | 4.03 (1.3–56.1) | 1.2 (0.18–11.61) | 2.63 (1.01–7.5) | 2.5 (1.3–7) | 0.7 (0.2–17) |
Mn | 314 (51–735) | 403 (43.47–1852) | 449 (0.46–1540) | 431 (118–931) | 400 (40–1660) |
Fe | 1360 (311–15,700) | 394 (166–2243) | 690 (254–2270) | 500 (250–1600) | 310 (78–8125) |
Co | 0.79 (0.19–7.6) | 0.25 (0.11–7.02) | 0.38 (0.11–1.07) | 0.38 (0.18–0.86) | 0.2 (0.06–23) |
Ni | 4.06 (1.16–22.3) | 1.25 (0.55–5.65) | 2.87 (0.46–6.3) | 2.8 (1.24–5.7) | 1.1 (0.4–550) |
Zn | 50.8 (21.6–194) | 31.3 (17.6–65.1) | 57 (1.3–145) | 48 (32–98) | 31(8–409) |
As | 0.65 (0.33–5.11) | 0.15 (0.05–0.49) | 0.18 (0.03–0.49) | 0.16 (0.01–0.5) | 0.13 (0.04–4.72) |
Se | 0.26 (0.04–0.57) | 0.71 (0.09–1.89) | 0.17 (0.04–0.36) | - | 0.3 (0.009–2) |
Br | 3.57 (1.73–13.6) | 1.30 (0.48–3.50) | 2.26 (1.07–4.4) | 2.2 (1.1–5) | – |
Rb | 17.2 (5.55–94.2) | 20.9 (5.9–55.2) | 13.8 (0.14–39,5_ | 11 (3.7–50) | 12.4 (1.4–81) |
Sr | 25.8 (8.32–106) | 9.2 (3.7–65.9) | 15.3 (4.2–30,5) | 13 (6.1–66) | 136 (3.8–60) |
Zr | 13.2 (2.34–292) | ||||
Mo | 0.089 (0.04–1.05) | 0.099 (0.03–0.650) | – | –- | – |
Sb | 0.25 (0.1–13.2) | 0.11 (0.04–0.23) | 0.23 (0.005–1.13) | 0.15 (0.073–0.43) | 0.07 (0.007–0.38) |
I | 1.03 (0.39–4.09) | 0.67 (0.19–1.65) | – | - | – |
Cs | 0.24 (0.09–5) | 0.21 (0.06–1.22) | 0.14 (0.006–0.47) | 0.12 (0.06–0.4) | 0.16 (0.02–1.63) |
Ba | 50.9 (8.14–368) | 19.9 (7.2–90.3) | 44 (3.1–113) | 36 (5.5–93) | 25 (5.3–130) |
La | 1.38 (0.33–19.9) | 0.46 (0.20–3.78) | 0.54 (0.19–1.76) | 0.44 (0.17–2.6) | 0.32 (0.07–3.5) |
Ce | 2.66 (0.79–45.1) | 0.93 (0.12–8.71) | 1.2 (0.27–3.4) | 1.0 (0.49–4.4) | 0.61 (0.10–4.78) |
Nd | 1.89 (0.1–22) | – | – | - | 0.23 (0.01–2.24) |
Sm | 0.17 (0.04–3.33) | – | 0.08 (0.03–0.24) | 0.056 (0.03–0.39) | 0.05 (0.004–0.38) |
Eu | 0.05(0.01–0.66) | – | – | - | 0.040 (1–0.19) |
Gd | 0.11(0.01–2.95) | – | – | - | 0.06 (0.004–0.62) |
Tb | 0.028 (0.01–0.5) | – | 0.013 (0.001–0.04) | 0.01 (0.004–0.05) | 0.01 (<0.001–0.09) |
Tm | 0.02 (0.003–0.305) | – | – | – | 0.003 (001–0.016) |
Yb | 0.116 (0.01–1.74) | – | – | – | 0003 (<0.001–0.016) |
Hf | 0.37 (0.06–7.32) | – | 0.13 (0.02–0.61) | 0.09 (0.017–0.6) | – |
Ta | 0.038 (0.0067–0.62) | – | – | – | – |
W | 0.2(0.08–1.53) | 0.45 (0.07–1.46) | 0.18 (0.04–1.13) | 0.1 (0.02–0.53) | – |
Au | 0.0005 (0.00007–0.0522) | – | – | – | – |
Th | 0.36 (0.12–6.79) | 0.11 (0.03–1.0) | 0.14 (0.04–0.44) | 0.11 (0.03–0.7) | 0.03 (0.007–1.5) |
U | 0.12 (0.03–1.45) | 0.05 (0.01–0.41) | 0.052 (0.003–0.16) | 0.04 (0.01–0.17) | 0.006 (0.002–0.08) |
Element | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 |
---|---|---|---|---|---|
Na | 0.81 | 0.40 | −0.02 | 0.23 | 0.03 |
Mg | 0.52 | 0.80 | 0.18 | 0.09 | 0.02 |
Al | 0.44 | 0.87 | 0.10 | 0.10 | 0.04 |
Sc | 0.50 | 0.83 | 0.13 | 0.15 | 0.03 |
Ca | 0.34 | 0.23 | 0.77 | −0.1 | 0.09 |
Ti | 0.35 | 0.87 | 0.17 | 0.08 | 0.02 |
Cr | 0.81 | 0.49 | 0.10 | 0.24 | 0.06 |
V | 0.45 | 0.85 | 0.19 | 0.11 | 0.05 |
Ni | 0.52 | 0.76 | 0.23 | 0.11 | 0.15 |
Fe | 0.77 | 0.50 | 0.19 | 0.25 | 0.04 |
Co | 0.77 | 0.50 | 0.18 | 0.22 | 0.06 |
Zn | 0.23 | 0.09 | 0.27 | −0.1 | 0.87 |
Se | −0.21 | −0.07 | 0.79 | 0.12 | 0.15 |
As | 0.74 | 0.48 | 0.24 | 0.27 | 0.04 |
Br | 0.55 | 0.22 | 0.61 | 0.03 | 0.04 |
Sr | 0.87 | 0.29 | 0.14 | −0.02 | 0.04 |
Rb | 0.37 | 0.12 | −0.02 | 0.88 | −0.01 |
Zr | 0.74 | 0.57 | −0.01 | 0.19 | 0.06 |
Mo | 0.75 | 0.17 | 0.21 | 0.11 | 0.04 |
Sb | −0.03 | 0.03 | 0.03 | 0.05 | 0.96 |
I | 0.19 | 0.50 | 0.75 | 0.00 | 0.07 |
Ba | 0.77 | 0.45 | 0.09 | 0.07 | 0.02 |
Cs | 0.20 | 0.15 | 0.05 | 0.91 | −0.05 |
W | 0.75 | 0.30 | 0.09 | 0.33 | 0.11 |
Th | 0.81 | 0.52 | −0.02 | 0.21 | 0.06 |
U | 0.80 | 0.52 | −0.03 | 0.20 | 0.09 |
Expl. Var. | 9.39 | 6.96 | 2.62 | 2.26 | 1.79 |
Prp. Totl | 0.36 | 0.27 | 0.10 | 0.09 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blinova, E.; Frontasyeva, M.; Chaligava, O.; Kochurov, B. Moss Technique Used to Monitor the Atmospheric Deposition of Trace Elements on the Territory of the Ryazan Region, Russia. Atmosphere 2024, 15, 1304. https://doi.org/10.3390/atmos15111304
Blinova E, Frontasyeva M, Chaligava O, Kochurov B. Moss Technique Used to Monitor the Atmospheric Deposition of Trace Elements on the Territory of the Ryazan Region, Russia. Atmosphere. 2024; 15(11):1304. https://doi.org/10.3390/atmos15111304
Chicago/Turabian StyleBlinova, Eleonora, Marina Frontasyeva, Omari Chaligava, and Boris Kochurov. 2024. "Moss Technique Used to Monitor the Atmospheric Deposition of Trace Elements on the Territory of the Ryazan Region, Russia" Atmosphere 15, no. 11: 1304. https://doi.org/10.3390/atmos15111304
APA StyleBlinova, E., Frontasyeva, M., Chaligava, O., & Kochurov, B. (2024). Moss Technique Used to Monitor the Atmospheric Deposition of Trace Elements on the Territory of the Ryazan Region, Russia. Atmosphere, 15(11), 1304. https://doi.org/10.3390/atmos15111304