Low-Carbon Territorial Spatial Detailed Planning in the Context of Climate Change: A Case Study of the Wenzhou Garden Expo Park Area, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
3. Research Methods
3.1. Calculation of Carbon Emission and Carbon Storage Trends
3.2. Prediction of Carbon Emission and Carbon Storage Based on Machine Learning
3.3. Data Preparation
3.4. Construction of the Random Forest Model
3.5. Model Training and Evaluation
3.6. Construction of Low-Carbon DetailedPlanning Indicators
4. Results
4.1. Spatiotemporal Variation in Carbon Emissions Across Different Sectors
4.2. Carbon Emission Estimation Under Conventional Land Use
4.3. Prediction of Overall Land Use Carbon Emissions and Carbon Storage
4.4. Estimation of Land Use Carbon Emissions Under Low-Carbon Planning Design
4.5. Comparison of Carbon Emissions and Carbon Storage Under Two Scenarios
4.6. Analysis of Temperature Variation and Carbon Emissions on a Diurnal Scale
5. Discussion
5.1. Continuous Growth of Carbon Emissions and the Limited Effect of Policy Regulation
5.2. Improvement in Carbon Storage Capacity and Its Realistic Limitations
5.3. The Effect of Rising Temperatures on Carbon Emissions and Response Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
1 | Logistics and warehousing land | 15 | Land for transportation service stations |
2 | Railway land | 16 | Land for government, social organizations, and press and publishing facilities |
3 | Special-purpose land | 17 | River water surface |
4 | Paddy field | 18 | Dryland |
5 | Hydraulic engineering land | 19 | Orchard |
6 | Agricultural facility land | 20 | Land for rail transit |
7 | Land for commercial and service facilities | 21 | Shrubland |
8 | Arbor forest land | 22 | Canal |
9 | Other woodland | 23 | Park and green land |
10 | Other grassland | 24 | Public utility land |
11 | Rural residential land | 25 | Highway land |
12 | Rural roads | 26 | Industrial land |
13 | Pond and pit water surface | 27 | Urban residential land |
14 | Land for science, education, culture, and health facilities | 28 | Urban and rural village road land |
References
- Wang, C.; Li, M.; Wang, X.; Deng, M.; Wu, Y.; Hong, W. Spatio-Temporal Dynamics of Carbon Storage in Rapidly Urbanizing Shenzhen, China: Insights and Predictions. Land 2024, 13, 1566. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, S.; Yang, H.; Chuai, X.; Zhai, L. Urban Land Use Simulation and Carbon-Related Driving Factors Analysis Based on RF-CA in Shanghai, China. Ecol. Indic. 2024, 166, 112555. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Neogi, S.; Roy, K.S.; Dash, P.K.; Nayak, A.K.; Mohapatra, T. Tropical Low Land Rice Ecosystem Is a Net Carbon Sink. Agric. Ecosyst. Environ. 2014, 189, 127–135. [Google Scholar] [CrossRef]
- Deng, C.; Zhou, D.; Wang, Y.; Wu, J.; Yin, Z. Association between Land Use and Urban Vitality in the Guangdong–Hong Kong–Macao Greater Bay Area: A Multiscale Study. Land 2024, 13, 1574. [Google Scholar] [CrossRef]
- Wang, G.; Han, Q.; de vries, B. The Multi-Objective Spatial Optimization of Urban Land Use Based on Low-Carbon City Planning. Ecol. Indic. 2021, 125, 107540. [Google Scholar] [CrossRef]
- Lan, J.; Li, Q.; Zheng, Y.; Liu, Z. The Impact of the Low-Carbon City Pilots Programme on Industrial Land Transfer by Local Governments in China. Econ. Anal. Policy 2023, 77, 824–842. [Google Scholar] [CrossRef]
- Venturi, M.; Piras, F.; Corrieri, F.; Fiore, B.; Santoro, A.; Agnoletti, M. Assessment of Tuscany Landscape Structure According to the Regional Landscape Plan Partition. Sustainability 2021, 13, 5424. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, A.; Wang, J.; Xia, K.; Liu, Z. Study on the Low-Carbon Development under a Resources-Dependent Framework of Water-Land -Energy Utilization: Evidence from the Yellow River Basin, China. Energy 2023, 280, 128207. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, M.; Ren, B.; Zhang, Y.; Kafy, A.-A.; Li, J. Ventilation Analysis of Urban Functional Zoning Based on Circuit Model in Guangzhou in Winter, China. Urban Clim. 2023, 47, 101385. [Google Scholar] [CrossRef]
- Fan, M.; Wang, Z.; Xue, Z. Spatiotemporal Evolution Characteristics, Influencing Factors of Land Use Carbon Emissions, and Low-Carbon Development in Hubei Province, China. Ecol. Inform. 2024, 81, 102567. [Google Scholar] [CrossRef]
- Labaran, Y.H.; Mathur, V.S.; Muhammad, S.U.; Musa, A.A. Carbon footprint management: A review of construction industry. Clean. Eng. Technol. 2022, 9, 100531. [Google Scholar] [CrossRef]
- Althoey, F.; Ansari, W.S.; Sufian, M.; Deifalla, A.F. Advancements in low-carbon concrete as a construction material for the sustainable built environment. Dev. Built Environ. 2023, 16, 100284. [Google Scholar] [CrossRef]
- Nicholson, S.R.; Rorrer, N.A.; Carpenter, A.C.; Beckham, G.T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 2021, 5, 673–686. [Google Scholar] [CrossRef]
- Kılkış, Ş. Transition towards urban system integration and benchmarking of an urban area to accelerate mitigation towards net-zero targets. Energy 2021, 236, 121394. [Google Scholar] [CrossRef]
- Li, Q.; Wei, J.; Gao, W. Spatial Differentiation and Influencing Factors of Land Eco-Efficiency Based on Low Carbon Perspective: A Case of 287 Prefecture-Level Cities in China. Environ. Chall. 2023, 10, 100681. [Google Scholar] [CrossRef]
- Singh, P.; Benbi, D.K. Soil Organic Carbon Pool Changes in Relation to Slope Position and Land-Use in Indian Lower Himalayas. CATENA 2018, 166, 171–180. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Duboc, O.; Golestanifard, A.; Holzinger, C.; Mayr, K.; Reiter, J.; Schiefer, A. Soil and Land Use Factors Control Organic Carbon Status and Accumulation in Agricultural Soils of Lower Austria. Geoderma 2022, 409, 115595. [Google Scholar] [CrossRef]
- Tan, X.; Tu, T.; Gu, B.; Zeng, Y. Scenario Simulation of CO2 Emissions from Light-Duty Passenger Vehicles Under Land Use-Transport Planning: A Case of Shenzhen International Low Carbon City. Sustain. Cities Soc. 2021, 75, 103266. [Google Scholar] [CrossRef]
- Leland, A.; Hoekman, S.K.; Liu, X. Review of Modifications to Indirect Land Use Change Modeling and Resulting Carbon Intensity Values within the California Low Carbon Fuel Standard Regulations. J. Clean. Prod. 2018, 180, 698–707. [Google Scholar] [CrossRef]
- Li, C.; Xu, H.; Du, P.; Tang, F. Predicting Land Cover Changes and Carbon Stock Fluctuations in Fuzhou, China: A Deep Learning and InVEST Approach. Ecol. Indic. 2024, 167, 112658. [Google Scholar] [CrossRef]
- Penazzi, S.; Accorsi, R.; Manzini, R. Planning Low Carbon Urban-Rural Ecosystems: An Integrated Transport Land-Use Model. J. Clean. Prod. 2019, 235, 96–111. [Google Scholar] [CrossRef]
- Ke, Y.; Yi, X. Path Selection for Low-Carbon Economic Land Use Pattern in China. Energy Procedia 2011, 5, 452–456. [Google Scholar] [CrossRef]
- Yanes, Y.; Romanek, C.S.; Delgado, A.; Brant, H.A.; Noakes, J.E.; Alonso, M.R.; Ibáñez, M. Oxygen and Carbon Stable Isotopes of Modern Land Snail Shells as Environmental Indicators from a Low-Latitude Oceanic Island. Geochim. Cosmochim. Acta 2009, 73, 4077–4099. [Google Scholar] [CrossRef]
- Prasad, R.D.; Raturi, A. Low-Carbon Measures for Fiji’s Land Transport Energy System. Util. Policy 2018, 54, 132–147. [Google Scholar] [CrossRef]
- Liu, A.S.; Li, W.; Kwok, C.Y. Low Carbon Stabilization of Hong Kong Marine Deposits by Sewage Sludge Ash for Land Reclamation. J. Clean. Prod. 2024, 452, 142110. [Google Scholar] [CrossRef]
- Bell, A.; Bunning, J.; Genxing, P.; Ishwaran, N.; Manfrinato, W.; Yi, Z. Low Carbon Land Development: Is There a Future for Integration across Sectors? Environ. Dev. 2014, 11, 175–189. [Google Scholar] [CrossRef]
- Price, J.; Zeyringer, M.; Konadu, D.; Sobral Mourão, Z.; Moore, A.; Sharp, E. Low Carbon Electricity Systems for Great Britain in 2050: An Energy-Land-Water Perspective. Appl. Energy 2018, 228, 928–941. [Google Scholar] [CrossRef]
- Luo, Y.; Li, X.; Chen, L.; Zhang, H.; Wang, M.; Chen, W. Low Carbon Development Patterns of Land Use under Complex Terrain Conditions: The Case of Chongqing in China. Ecol. Indic. 2023, 155, 110990. [Google Scholar] [CrossRef]
- Ma, Z.; Liang, T.; Fu, H.; Ma, Q.; Chang, D.; Zhang, J.; Che, Z.; Zhou, G.; Cao, W. Long-Term Green Manuring Increases Soil Carbon Sequestration via Decreasing qCO2 Caused by Lower Microbial Phosphorus Limitation in a Dry Land Field. Agric. Ecosyst. Environ. 2024, 374, 109142. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wang, W.; Zhao, R.; Zhang, M.; Wu, C. Land Use, Total Carbon Emissions Change and Low Carbon Land Management in Coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- Tang, W.; Xu, Y.J.; Ni, M.; Li, S. Land Use and Hydrological Factors Control Concentrations and Diffusive Fluxes of Riverine Dissolved Carbon Dioxide and Methane in Low-Order Streams. Water Res. 2023, 231, 119615. [Google Scholar] [CrossRef] [PubMed]
- Rallings, A.M.; Smukler, S.M.; Gergel, S.E.; Mullinix, K. Towards multifunctional land use in an agricultural landscape: A trade-off and synergy analysis in the Lower Fraser Valley, Canada. Landsc. Urban Plan 2019, 184, 88–100. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Li, X.; Xu, M.; Li, Y.; Zheng, H.; Luo, Y.; Smith, P. Impacts of Land Use and Salinization on Soil Inorganic and Organic Carbon in the Middle-Lower Yellow River Delta. Pedosphere 2021, 31, 839–848. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Feng, S. Impact of the Low-Carbon City Pilot Project on China’s Land Transfers in High Energy-Consuming Industries. J. Clean. Prod. 2022, 363, 132491. [Google Scholar] [CrossRef]
- Chen, X.; Liang, X.; Xia, J.; She, D. Impact of Lower Boundary Condition of Richards’ Equation on Water, Energy, and Soil Carbon Based on Coupling Land Surface and Biogeochemical Models. Pedosphere 2018, 28, 497–510. [Google Scholar] [CrossRef]
- Deo, A.; Shirsath, P.B.; Aggarwal, P.K. Identifying Resource-Conscious and Low-Carbon Agricultural Development Pathways through Land Use Modelling. Land Use Policy 2024, 143, 107208. [Google Scholar] [CrossRef]
- Goh, C.S.; Junginger, M.; Potter, L.; Faaij, A.; Wicke, B. Identifying Key Factors for Mobilising Under-Utilised Low Carbon Land Resources: A Case Study on Kalimantan. Land Use Policy 2018, 70, 198–211. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, H.; Wang, H.; Che, Y.; Wang, J.; Liao, Y.; Lv, S. High-Carbon Expansion or Low-Carbon Intensive and Mixed Land-Use? Recent Observations from Megacities in Developing Countries: A Case Study of Shanghai, China. J. Environ. Manag. 2023, 348, 119294. [Google Scholar] [CrossRef]
- Chen, W.; Gu, T.; Fang, C.; Zeng, J. Global Urban Low-Carbon Transitions: Multiscale Relationship between Urban Land and Carbon Emissions. Environ. Impact Assess. Rev. 2023, 100, 107076. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Zuo, J.; Rameezdeen, R. From “Traditional” to “Low Carbon” Urban Land Use: Evaluation and Obstacle Analysis. Sustain. Cities Soc. 2019, 51, 101722. [Google Scholar] [CrossRef]
- Goh, C.S.; Wicke, B.; Potter, L.; Faaij, A.; Zoomers, A.; Junginger, M. Exploring Under-Utilised Low Carbon Land Resources from Multiple Perspectives: Case Studies on Regencies in Kalimantan. Land Use Policy 2017, 60, 150–168. [Google Scholar] [CrossRef]
- Wu, H.; Fang, S.; Zhang, C.; Hu, S.; Nan, D.; Yang, Y. Exploring the Impact of Urban Form on Urban Land Use Efficiency under Low-Carbon Emission Constraints: A Case Study in China’s Yellow River Basin. J. Environ. Manag. 2022, 311, 114866. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Fu, P.; Shi, T.; Chen, Y.; Zeng, C.; Zhang, H.; Wang, S. Exploring Influence Factors in Mapping Soil Organic Carbon on Low-Relief Agricultural Lands Using Time Series of Remote Sensing Data. Soil Tillage Res. 2021, 210, 104982. [Google Scholar] [CrossRef]
- Bi, W.; Weng, B.; Chen, J.; Yan, D. Evolution Characteristics of Groundwater Level and Its Relation to Low-Carbon Development in Southern Horqin Sandy Land, China. Energy Procedia 2018, 152, 809–814. [Google Scholar] [CrossRef]
- Hammond, G.P.; Howard, H.R.; Rana, H.S. Environmental and Resource Burdens Associated with Low Carbon, More Electric Transition Pathways to 2050: Footprint Components from Carbon Emissions and Land Use to Waste Arisings and Water Consumption. Glob. Transit. 2019, 1, 28–43. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Beringer, T.; Strong, A. Does the World Have Low-Carbon Bioenergy Potential from the Dedicated Use of Land? Energy Policy 2017, 110, 434–446. [Google Scholar] [CrossRef]
- Tang, P.; Yang, S.; Shen, J.; Fu, S. Does China’s Low-Carbon Pilot Programme Really Take off? Evidence from Land Transfer of Energy-Intensive Industry. Energy Policy 2018, 114, 482–491. [Google Scholar] [CrossRef]
- Gamboa, A.M.; Galicia, L. Differential Influence of Land Use/Cover Change on Topsoil Carbon and Microbial Activity in Low-Latitude Temperate Forests. Agric. Ecosyst. Environ. 2011, 142, 280–290. [Google Scholar] [CrossRef]
- Bristow, A.L.; Tight, M.; Pridmore, A.; May, A.D. Developing Pathways to Low Carbon Land-Based Passenger Transport in Great Britain by 2050. Energy Policy 2008, 36, 3427–3435. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, Y.; Liu, Z.; Yu, Z.; Song, X.; Meng, X.; Yang, X.; Sun, L. Deciphering the Point Source Carbon Footprint Puzzle: Land Use Dynamics and Socio-Economic Drivers. Sci. Total Environ. 2024, 176500. [Google Scholar] [CrossRef]
- Fu, J.; Ding, R.; Zhu, Y.; Du, L.; Shen, S.; Peng, L.; Zou, J.; Hong, Y.; Liang, J.; Wang, K.; et al. Analysis of the Spatial-Temporal Evolution of Green and Low Carbon Utilization Efficiency of Agricultural Land in China and Its Influencing Factors under the Goal of Carbon Neutralization. Environ. Res. 2023, 237, 116881. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Luo, X.; Dong, L.; Wu, C.; Liang, H.; Ren, J. An Empirical Study on Transit-Oriented Low-Carbon Urban Land Use Planning: Exploratory Spatial Data Analysis (ESDA) on Shanghai, China. Habitat Int. 2016, 53, 379–389. [Google Scholar] [CrossRef]
- Zhang, X.; He, J.; Deng, Z.; Ma, J.; Chen, G.; Zhang, M.; Li, D. Comparative Changes of Influence Factors of Rural Residential Area Based on Spatial Econometric Regression Model: A Case Study of Lishan Township, Hubei Province, China. Sustainability 2018, 10, 3403. [Google Scholar] [CrossRef]
- Willauer, H.D.; Hardy, D.R.; Moyer, S.A.; DiMascio, F.; Williams, F.W.; Drab, D.M. An Economic Basis for Littoral Land-Based Production of Low Carbon Fuel from Nuclear Electricity and Seawater for Naval or Commercial Use. Energy Policy 2015, 81, 67–75. [Google Scholar] [CrossRef]
- Liu, H.; Yan, F.; Tian, H. Towards Low-Carbon Cities: Patch-Based Multi-Objective Optimization of Land Use Allocation Using an Improved Non-Dominated Sorting Genetic Algorithm-II. Ecol. Indic. 2022, 134, 108455. [Google Scholar] [CrossRef]
- Liu, J.; Peng, K.; Zuo, C.; Li, Q. Spatiotemporal Variation of Land-Use Carbon Emissions and Its Implications for Low Carbon and Ecological Civilization Strategies: Evidence from Xiamen-Zhangzhou-Quanzhou Metropolitan Circle, China. Sustain. Cities Soc. 2022, 86, 104083. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, M.; Kafy, A.-A.; Tong, B.; Hao, D.; Feng, Y. Predicting the Impacts of Urban Land Change on LST and Carbon Storage Using InVEST, CA-ANN and WOA-LSTM Models in Guangzhou, China. Earth Sci. Inform. 2022, 16, 437–454. [Google Scholar] [CrossRef]
- Kovacs, K.F.; Haight, R.G.; Moore, K.; Popp, M. Afforestation for Carbon Sequestration in the Lower Mississippi River Basin of Arkansas, USA: Does Modeling of Land Use at Fine Spatial Resolution Reveal Lower Carbon Cost? For. Policy Econ. 2021, 130, 102526. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Arai, E.; da Silva, G.M.; Dutra, A.C.; Mataveli, G.; Duarte, V.; Martini, P.R.; Cassol, H.L.G.; Ferreira, D.S.; Junqueira, L.R. Mapping and Monitoring Forest Plantations in São Paulo State, Southeast Brazil, Using Fraction Images Derived from Multiannual Landsat Sensor Images. Forests 2022, 13, 1716. [Google Scholar] [CrossRef]
- Ke, Y.; Xia, L.; Huang, Y.; Li, S.; Zhang, Y.; Liang, S.; Yang, Z. The Carbon Emissions Related to the Land-Use Changes from 2000 to 2015 in Shenzhen, China: Implication for Exploring Low-Carbon Development in Megacities. J. Environ. Manag. 2022, 319, 115660. [Google Scholar] [CrossRef]
- Abdrabo, K.I.; Hamed, H.; Fouad, K.A.; Shehata, M.; Kantoush, S.A.; Sumi, T.; Elboshy, B.; Osman, T. A Methodological Approach towards Sustainable Urban Densification for Urban Sprawl Control at the Microscale: Case Study of Tanta, Egypt. Sustainability 2021, 13, 5360. [Google Scholar] [CrossRef]
- Stephan, A.; Crawford, R.H.; De Myttenaere, K. A comprehensive assessment of the life cycle energy demand of passive houses. Appl. Energy 2013, 112, 23–34. [Google Scholar] [CrossRef]
- Stephan, A.; Crawford, R.H.; Bunster, V.; Warren-Myers, G.; Moosavi, S. Towards a multiscale framework for modeling and improving the life cycle environmental performance of built stocks. J. Ind. Ecol. 2022, 26, 1195–1217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Q.; Fu, J.; Huang, F.; Li, G.; Huang, H.; Tang, Z.; Zhang, Z. Low-Carbon Territorial Spatial Detailed Planning in the Context of Climate Change: A Case Study of the Wenzhou Garden Expo Park Area, China. Atmosphere 2024, 15, 1334. https://doi.org/10.3390/atmos15111334
Shao Q, Fu J, Huang F, Li G, Huang H, Tang Z, Zhang Z. Low-Carbon Territorial Spatial Detailed Planning in the Context of Climate Change: A Case Study of the Wenzhou Garden Expo Park Area, China. Atmosphere. 2024; 15(11):1334. https://doi.org/10.3390/atmos15111334
Chicago/Turabian StyleShao, Qike, Jiande Fu, Fuqiang Huang, Gang Li, Hui Huang, Zhiyong Tang, and Zhongxun Zhang. 2024. "Low-Carbon Territorial Spatial Detailed Planning in the Context of Climate Change: A Case Study of the Wenzhou Garden Expo Park Area, China" Atmosphere 15, no. 11: 1334. https://doi.org/10.3390/atmos15111334
APA StyleShao, Q., Fu, J., Huang, F., Li, G., Huang, H., Tang, Z., & Zhang, Z. (2024). Low-Carbon Territorial Spatial Detailed Planning in the Context of Climate Change: A Case Study of the Wenzhou Garden Expo Park Area, China. Atmosphere, 15(11), 1334. https://doi.org/10.3390/atmos15111334