Prediction of Hydrogen Production from Solid Oxide Electrolytic Cells Based on ANN and SVM Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Artificial Neural Network Model
2.2. Support Vector Machine Models
2.3. Predictability Assessment
- (1)
- Root mean square error (RMSE): Calculates the equilibrium of real and expected values. If the RMSE of the model is low, it shows excellent performance. Zero RMSE stands for perfect matching. RMSE is given by:
- (2)
- The mean absolute percentage error, commonly abbreviated as MAPE, quantifies the average of percentage deviations between predicted and actual values, disregarding their sign. This metric is particularly useful in assessing prediction accuracy. A smaller MAPE value indicates superior model performance, as it signifies a closer alignment between predictions and observed data. MAPE is given by:
- (3)
- Correlation coefficient (R2): This is a measure of the reliability of the relationship between real and expected values. The correlation coefficient is between 0 and 1. The higher the model R2, the better the model performance. R2 is given by:
- (4)
- The mean absolute error, commonly abbreviated as MAE, is a performance metric utilized in statistical analysis and machine learning. It quantifies the average disparity between predicted values and actual observations, disregarding whether predictions are overestimates or underestimates. This measure provides a straightforward assessment of prediction accuracy by focusing on the absolute size of prediction errors and is given by:
3. Predictive Modeling Dataset
3.1. Experimental Setup and Specifications
3.2. Model Data
4. Results and Discussion
4.1. Results of Guidance Data
4.2. Model Validation and Model Predictability Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jolaoso, L.A.; Bello, I.T.; Ojelade, O.A.; Yousuf, A.; Duan, C.; Kazempoor, P. Operational and scaling-up barriers of SOEC and mitigation strategies to boost H2 production-a comprehensive review. Int. J. Hydrogen Energy 2023, 48, 33017–33041. [Google Scholar] [CrossRef]
- Kamkeng, A.D.N.; Wang, M. Long-term performance prediction of solid oxide electrolysis cell (SOEC) for CO2/H2O co-electrolysis considering structural degradation through modelling and simulation. Chem. Eng. J. 2022, 429, 132158. [Google Scholar] [CrossRef]
- Lee, D.; Kim, Y.S.; Bae, Y.; Park, J.Y.; Ahn, K.Y. Dynamic Behavior of an SOEC System With a Schedule-Based Start-Up and Operating Process. J. Energy Resour. Technol. 2024, 146, 072102. [Google Scholar] [CrossRef]
- Stempien, J.P.; Ding, O.L.; Sun, Q.; Chan, S.H. Energy and exergy analysis of Solid Oxide Electrolyser Cell (SOEC) working as a CO2 mitigation device. Int. J. Hydrogen Energy 2012, 37, 14518–14527. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, J.; Wang, Y.; Ni, M.; Li, M. Transient characteristics of a solid oxide electrolysis cell under different voltage ramps: Transport phenomena behind overshoots. Energy Convers. Manag. 2023, 279, 116759. [Google Scholar] [CrossRef]
- Hou, D.; Ma, W.; Hu, L.; Huang, Y.; Yu, Y.; Wan, X.; Wu, X.; Li, X. Modeling of Nonlinear SOEC Parameter System Based on Data-Driven Method. Atmosphere 2023, 14, 1432. [Google Scholar] [CrossRef]
- Moçoteguy, P.; Brisse, A. A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. Int. J. Hydrogen Energy 2013, 38, 15887–15902. [Google Scholar] [CrossRef]
- Königshofer, B.; Höber, M.; Nusev, G.; Boškoski, P.; Hochenauer, C.; Subotić, V. Accelerated degradation for solid oxide electrolysers: Analysis and prediction of performance for varying operating environments. J. Power Sources 2022, 523, 230982. [Google Scholar] [CrossRef]
- Liu, H.; Høgh, J.; Blennow, P.; Sun, X.; Zong, Y.; Chen, M. Assessing fluctuating wind to hydrogen production via long-term testing of solid oxide electrolysis stacks. Appl. Energy 2024, 361, 122938. [Google Scholar] [CrossRef]
- Wang, N.; Guo, Y.; Liu, L.; Shao, S. Numerical assessment and optimization of photovoltaic-based hydrogen-oxygen Co-production energy system: A machine learning and multi-objective strategy. Renew. Energy 2024, 227, 120483. [Google Scholar] [CrossRef]
- Cheng, G.; Luo, E.; Zhao, Y.; Yang, Y.; Chen, B.; Cai, Y.; Wang, X.; Dong, C. Analysis and prediction of green hydrogen production potential by photovoltaic-powered water electrolysis using machine learning in China. Energy 2023, 284, 129302. [Google Scholar] [CrossRef]
- Mohamed, A.; Ibrahem, H.; Yang, R.; Kim, K. Optimization of proton exchange membrane electrolyzer cell design using machine learning. Energies 2022, 15, 6657. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Wang, C.; Bello, I.T.; Yu, N.; Chen, X.; Zheng, K.; Han, M.; Ni, M. Multi-objective optimization of protonic ceramic electrolysis cells based on a deep neural network surrogate model. Appl. Energy 2024, 365, 123236. [Google Scholar] [CrossRef]
- Forootan, M.M.; Ahmadi, A. Machine learning-based optimization and 4E analysis of renewable-based polygeneration system by integration of GT-SRC- ORC-SOFC-PEME-MED-RO using multi-objective gray wolf optimization algorithm and neural networks. Renew. Sustain. Energy Rev. 2024, 200, 114616. [Google Scholar] [CrossRef]
- Huo, H.B.; Zhu, X.J.; Cao, G.Y. Nonlinear modeling of a SOFC stack based on a least squares support vector machine. J. Power Sources 2006, 162, 1220–1225. [Google Scholar] [CrossRef]
- Kang, Y.W.; Li, J.; Cao, G.Y.; Tu, H.Y.; Li, J.; Yang, J. Dynamic temperature modeling of an SOFC using least squares support vector machines. J. Power Sources 2008, 179, 683–692. [Google Scholar] [CrossRef]
- Hai, T.; Aziz, K.H.H.; Zhou, J.; Dhahad, H.A.; Sharma, K.; Almojil, S.F.; Almohana, A.I.; Alali, A.F.; Ismail Kh, T.; Mehrez, S.; et al. Neural network-based optimization of hydrogen fuel production energy system with proton exchange electrolyzer supported nanomaterial. Fuel 2023, 332, 125827. [Google Scholar] [CrossRef]
- Hai, T.; Almujibah, H.; Mostafa, L.; Kumar, J.; Van Thuong, T.; Farhang, B.; Mahmoud, M.H.; El-Shafai, W. Innovative clean hybrid energy system driven by flame-assisted SOFC: Multi-criteria optimization with ANN and genetic algorithm. Int. J. Hydrogen Energy 2024, 63, 193–206. [Google Scholar] [CrossRef]
- Gong, Z.; Li, L.; Ghadimi, N. SOFC stack modeling: A hybrid RBF-ANN and flexible Al-Biruni Earth radius optimization approach. Int. J. Low-Carbon Technol. 2024, 19, 1337–1350. [Google Scholar] [CrossRef]
- Song, C.; Lee, S.; Gu, B.; Chang, I.; Cho, G.Y.; Baek, J.D.; Cha, S.W. A study of anode-supported solid oxide fuel cell modeling and optimization using neural network and multi-armed bandit algorithm. Energies 2020, 13, 1621. [Google Scholar] [CrossRef]
- Subotić, V.; Eibl, M.; Hochenauer, C. Artificial intelligence for time-efficient prediction and optimization of solid oxide fuel cell performances. Energy Convers. Manag. 2021, 230, 113764. [Google Scholar] [CrossRef]
- Moser, G.; Costamagna, P.; De Giorgi, A.; Greco, A.; Magistri, L.; Pellaco, L.; Trucco, A. Joint feature and model selection for SVM fault diagnosis in solid oxide fuel cell systems. Math. Probl. Eng. 2015, 2015, 282547. [Google Scholar] [CrossRef]
- Sassone, G.; Celikbilek, O.; Hubert, M.; Develos-Bagarinao, K.; David, T.; Guetaz, L.; Martin, I.; Villanova, J.; Benayad, A.; Rorato, L.; et al. Effect of the operating temperature on the degradation of solid oxide electrolysis cells. J. Power Sources 2024, 605, 234541. [Google Scholar] [CrossRef]
- Peksen, M.M. Material and Performance Optimization for Syngas Preparation Using Artificial Intelligence (AI)-Based Machine Learning (ML). Hydrogen 2023, 4, 474–492. [Google Scholar] [CrossRef]
- Wang, R.; Chen, B.; Qiu, S.; Ma, L.; Zhu, Z.; Wang, Y.; Qiu, X. Hazardous source estimation using an artificial neural network, particle swarm optimization and a simulated annealing algorithm. Atmosphere 2018, 9, 119. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Applications of artificial neural-networks for energy systems. Appl. Energy 2000, 67, 17–35. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, D.; Li, M.; Li, S.; Wang, F.; Yang, Z.; Zhang, W.; Chen, S.; Yao, D. A novel method for petroleum and natural gas resource potential evaluation and prediction by support vector machines (SVM). Appl. Energy 2023, 351, 121836. [Google Scholar] [CrossRef]
- Chia, Y.Y.; Lee, L.H.; Shafiabady, N.; Isa, D. A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine. Appl. Energy 2015, 137, 588–602. [Google Scholar] [CrossRef]
- Wang, H.; Hu, D. Comparison of SVM and LS-SVM for regression. In Proceedings of the 2005 International Conference on Neural Networks and Brain, Beijing, China, 13–15 October 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 1, pp. 279–283. [Google Scholar]
- Wu, Y.; Wu, X.; Xu, Y.; Cheng, Y.; Li, X. A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency. Sustainability 2023, 15, 14402. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Cai, S.; Xu, Y.; Hu, L.; Chi, B.; Peng, J.; Li, X. Data-driven approaches for predicting performance degradation of solid oxide fuel cells system considering prolonged operation and shutdown accumulation effect. J. Power Sources 2024, 598, 234186. [Google Scholar] [CrossRef]
- Meenal, R.; Selvakumar, A.I. Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renew. Energy 2018, 121, 324–343. [Google Scholar] [CrossRef]
- Cheng, T.; Jiang, J.; Qin, H.; Li, X. Performance degradation and fault mechanisms based solid oxide fuel cell system multimode modeling and analysis. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2906–2911. [Google Scholar]
- Zhao, D.; He, Q.; Wu, X.; Xu, Y.; Jiang, J.; Li, X.; Ni, M. Modeling and optimization of high temperature proton exchange membrane electrolyzer cells. Int. J. Green Energy 2022, 19, 919–930. [Google Scholar] [CrossRef]
- Cheng, T.; Jiang, J.; Xu, M.; Li, X. Performance evaluation and optimization of a solid oxide fuel cell system combined with solid oxide electrolysis cell. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2473–2477. [Google Scholar]
- Chicco, D.; Warrens, M.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
Variable | Value | Unit |
---|---|---|
Operation time | 50 | hours |
Sample time | 90 | seconds |
Voltage | 1.2 | V |
Temperature | 800 | °C |
Current | 50 | A |
Water feed | 20 | NL/h |
Communication delay time | 0.03 or 0.01–0.02 | hours |
Hydrogen production | 5 | Nm3/h |
Train ratio | 0.8 | Training dataset, with 80% of the data used for training and 20% for testing. |
Single cell size | 10 × 10 | cm2 |
Number of cells | 1 | - |
Methodology | Delay time (ε) | RMSE (Nm3/h) | MAPE (%) | MAE (Nm3/h) | R2 |
---|---|---|---|---|---|
Artificial neural network | 0.01–0.02 h | 194.41 × 10−4 | 206.41 × 10−3 | 107.89 × 10−4 | 995.09 × 10−3 |
0.03 h | 170.13 × 10−4 | 238.89 × 10−3 | 123.83 × 10−4 | 996.25 × 10−3 | |
Support vector machine | 0.01–0.02 h | 375.79 × 10−4 | 622.41 × 10−3 | 318.82 × 10−4 | 981.64 × 10−3 |
0.03 h | 378.11 × 10−4 | 623.65 × 10−3 | 31.93 × 10−3 | 981.49 × 10−3 |
Methodology | Delay Time (ε) | RMSE (Nm3 /h) | MAPE (%) | MAE (Nm3 /h) | R2 |
---|---|---|---|---|---|
Artificial neural network | 0.01–0.02 h | 2.59 × 10−2 | 33.34 × 10−2 | 1.70 × 10−2 | 99.76 × 10−2 |
0.03 h | 2.74 × 10−2 | 34.43 × 10−2 | 1.73 × 10−2 | 99.73 × 10−2 | |
Support vector machine | 0.01–0.02 h | 2.70 × 10−2 | 44.01 × 10−2 | 2.24 × 10−2 | 99.74 × 10−2 |
0.03 h | 2.67 × 10−2 | 43.44 × 10−2 | 2.11 × 10−2 | 99.75 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Li, Y.; Chen, J.; Li, M.; Song, Q.; Huang, Y.; Wu, X.; Xu, Y.; Li, X. Prediction of Hydrogen Production from Solid Oxide Electrolytic Cells Based on ANN and SVM Machine Learning Methods. Atmosphere 2024, 15, 1344. https://doi.org/10.3390/atmos15111344
Chen K, Li Y, Chen J, Li M, Song Q, Huang Y, Wu X, Xu Y, Li X. Prediction of Hydrogen Production from Solid Oxide Electrolytic Cells Based on ANN and SVM Machine Learning Methods. Atmosphere. 2024; 15(11):1344. https://doi.org/10.3390/atmos15111344
Chicago/Turabian StyleChen, Ke, Youran Li, Jie Chen, Minyang Li, Qing Song, Yushui Huang, Xiaolong Wu, Yuanwu Xu, and Xi Li. 2024. "Prediction of Hydrogen Production from Solid Oxide Electrolytic Cells Based on ANN and SVM Machine Learning Methods" Atmosphere 15, no. 11: 1344. https://doi.org/10.3390/atmos15111344
APA StyleChen, K., Li, Y., Chen, J., Li, M., Song, Q., Huang, Y., Wu, X., Xu, Y., & Li, X. (2024). Prediction of Hydrogen Production from Solid Oxide Electrolytic Cells Based on ANN and SVM Machine Learning Methods. Atmosphere, 15(11), 1344. https://doi.org/10.3390/atmos15111344