The Kernel Density Estimation Technique for Spatio-Temporal Distribution and Mapping of Rain Heights over South Africa: The Effects on Rain-Induced Attenuation
Abstract
:1. Introduction
2. Methodology
2.1. Climatology of Research Locations and Data Source
2.2. An Overview of Kernel Density Estimation (KDE)
- Gaussian Kernel
- 2.
- Epanechnikov Kernel
- 3.
- Triangular Kernel
- 4.
- Rectangular Kernel
2.3. Effects of Rain Heights on Rain-Induced Attenuation
3. Results and Discussion
3.1. Validation of ZDIH Data Extracted from ERA-5
3.2. Performance of Four KDE Methods
3.3. Seasonal Variation of Estimated Rain Heights Using KDE
3.3.1. Rain Height Distribution in the Summer
3.3.2. Rain Height Distribution in Autumn
3.3.3. Rain Height Distribution in Winter
3.3.4. Rain Height Distribution in Spring
3.4. Mapping of Seasonal Rain Height over South Africa
3.5. Comparison of Measured, Estimated, and ITU-Recommended Rain Heights
3.6. Effects of Rain Height on Rain-Induced Attenuation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayo, O.; Owolawi, P.A.; Ojo, J.S.; Mpoporo, L.J. Rain Impairment Model for Satellite Communication Link Design in South Africa using Neural Network. In Proceedings of the 2020 2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC), Kimberley, South Africa, 25–27 November 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Emiliani, L.D. Rain-induced attenuation in satellite communications systems: Implications for network design. IEEE Commun. Mag. 2014, 52, 32–38. [Google Scholar]
- Salonen, E.J.; Uppala, S. Modelling of rain attenuation based on the vertical structure of precipitation. Radio Sci. 1991, 26, 471–477. [Google Scholar]
- Malinga, C.; Mphale, K. Rainfall analysis and mapping in Southern Africa: Implications for rain attenuation. J. Atmos. Sol.-Terr. Phys. 2017, 158, 20–31. [Google Scholar]
- Ippolito, L.J. Radiowave Propagation in Satellite Communications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 9401170290/9789401170291. [Google Scholar]
- ITU-R. Propagation Data and Prediction Methods Required for the Design of Earth-Space Telecommunication Systems; Recommendation ITU-R P.618-13; International Telecommunication Union: Geneva, Switzerland, 2017. [Google Scholar]
- Quibus, L.; Le Mire, V.; Queyrel, J.; Castanet, L.; Feral, L. Rain Attenuation Estimation with the Numerical Weather Prediction Model WRF: Impact of Rain Drop Size Distribution for a Temperate Climate. In Proceedings of the European Conference on Antennas and Propagation, Dusseldorf, Germany, 22–26 March 2021. [Google Scholar] [CrossRef]
- Mason, S.J.; Duthie, A. Statistical Modeling of Rainfall for Telecommunication Applications in South Africa. S. Afr. J. Sci. 2019, 115, 7–8. [Google Scholar]
- Lawal, Y.B.; Falodun, S.E.; Ojo, J.S. Temporal Evolution of Atmospheric Parameter-Profiling on Rain Height Over Two Geoclimatic Regions in Nigeria. J. Atmos. Sol.-Terr. Phys. 2020, 211, 105482. [Google Scholar] [CrossRef]
- Olurotimi, E.O.; Sokoya, O.; Ojo, J.S.; Owolawi, P.A. Distribution of Rain Height Over Subtropical Region: Durban, South Africa for Satellite Communication Systems. IEEE Radio and Antenna Days of the Indian Ocean (IEEE RADIO 2017). IOP Conf. Ser. Mater. Sci. Eng. 2018, 321, 012006. [Google Scholar] [CrossRef]
- ITU-R. Rain Height Model for Prediction Methods. Recommendation ITU-R P.839-4. 2013. Available online: https://www.itu.int/rec/R-REC-P.839-4-201303-I/en (accessed on 27 September 2024).
- Mandeep, J.S. Rain Height Statistics for Satellite Communication in Malaysia. J. Atmos. Sol.-Terr. Phys. 2008, 70, 1617–1620. [Google Scholar] [CrossRef]
- Nor Azlan, M.A.; Din, J.; Lam, H.Y. Rain Height Information from TRMM Precipitation Radar for Satellite Communication in Malaysia. In Proceedings of the 2011 IEEE International Conference on Space Science and Communication (IconSpace), Penang, Malaysia, 12–13 July 2011. [Google Scholar] [CrossRef]
- Ojo, J.S.; Falodun, S.E.; Odiba, O. 0 °C Isotherm Height Distribution for Earth-space Communication Satellite Links in Nigeria. Indian J. Radio Space Phys. 2014, 43, 225–234. [Google Scholar]
- Omakoji, O. Rain Height Distribution Over Some Stations in Tropical Nigeria Based on TRMM Precipitation Data. J. Basic Appl. Res. 2016, 2, 503–507. [Google Scholar]
- Lawal, Y.B.; Ojo, J.S.; Falodun, S.E. Rain Height Statistics from GPM Data for Satellite Communications Systems in Nigeria. IOP Conf. Ser. Earth Environ. Sci. 2021, 655, 012038. [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, D.-C.; Yom, J.-H.; Pack, J. Telecommunication Modeling by Integration of Geophysical and Geospatial Information. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Anchorage, AK, USA, 20–24 September 2004. [Google Scholar] [CrossRef]
- Hernández, E.A.; Gonzalez Cruz, M.; Uddameri, V. Climatic Influences on Agricultural Drought Risks Using Semiparametric Kernel Density Estimation. Water 2020, 12, 2813. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, S.; Zhang, X.; Hao, X.; Zhao, Z.; Zhu, Q.; Zhang, R. Weighted Mean Annual Rain Height Applied to Rain Attenuation Prediction on Earth-Space Links. Int. J. Antennas Propag. 2022, 2022, 4162415. [Google Scholar] [CrossRef]
- Smith, J.; Brown, A.; Lee, C. Enhancing Predictive Models with Nonparametric Kernel Density Estimation in Machine Learning Frameworks. J. Adv. Comput. 2021, 18, 45–60. [Google Scholar]
- Schulze, R.E. South African Atlas of Climatology and Agrohydrology; WRC Report 1489/1/06; Water Research Commission: Pretoria, South Africa, 2007. [Google Scholar]
- Climate Data. Climate data for cities worldwide. Environmental Change Unit, University of Oxford, 2020; Available online: https://en.climate-data.org/africa/south-africa-61/ (accessed on 27 September 2024).
- Rouault, M.; Pohl, B.; Penven, P. Role of Ocean Currents in Influencing South Africa’s Climate. J. Clim. 2010, 23, 4508–4526. [Google Scholar]
- Jury, M.R. Coastal Subtropical Climate of Durban and the Eastern Coastline. S. Afr. J. Sci. 2014, 110, 1–10. [Google Scholar]
- South African Weather Service. 2020. Available online: https://www.weathersa.co.za/ (accessed on 2 October 2024).
- Kruger, A.C.; Nxumalo, M.P. Historical Rainfall Trends in South Africa: 1921–2015. Water SA 2017, 43, 285–297. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). Climate Data Store (CDS). 2017. Available online: https://cds.climate.copernicus.eu/ (accessed on 29 September 2024).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 1986. [Google Scholar]
- Epanechnikov, V.A. Non-parametric Estimation of a Multivariate Probability Density. Theory Probab. Its Appl. 1969, 14, 153–158. [Google Scholar] [CrossRef]
- Scott, D.W. Multivariate Density Estimation: Theory, Practice, and Visualization; John Wiley & Sons: Hoboken, NJ, USA, 1992. [Google Scholar]
- Fashuyi, O.M.; Owolawi, P.A.; Afullo, T.J. Rainfall Rate Modeling for LOS Radio Systems in South Africa. S. Afr. Inst. Electr. Eng. 2006, 97, 74–81. [Google Scholar] [CrossRef]
- Moorgawaa, A.; Bencherif, H.; Michaelis, M.M.; Porteneuve, J.; Malinga, S. The Durban atmospheric LIDAR. Opt. Laser Technol. 2007, 39, 306–312. [Google Scholar] [CrossRef]
- Dee, D.; Poli, R.; Simmons, A.; Tompkins, A.M.; Berrisford, S.; Berrisford, P.; Peubey, J.C.; Hersbach, H.; Morcrette, B.; Munoz-Sabater, R. Radiosonde Bias Adjustments for ERA5. ECMWF. 2015. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2015/14730-radiosonde-bias-adjustments-era5.pdf (accessed on 6 September 2024).
- Jia, Y.; Zhu, C.; Tang, B.; Fang, J. Evaluating the Reliability of Air Temperature from ERA5 Reanalysis Data Using Ground-Based Measurements. arXiv 2022. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S. Validation of ERA5 Boundary Layer Meteorological Variables by Remote-Sensing Measurements in the Southeast China Mountains. Remote Sens. 2023, 15, 548. [Google Scholar] [CrossRef]
- Lawal, Y.B.; Falodun, S.E.; Ojo, J.S.; Olurotimi, E.O. Geoclimatic Characterization and Latitudinal Dependence of Rain Heights over Nigeria. J. Phys. Conf. Ser. 2021, 2034, 012010. [Google Scholar] [CrossRef]
- Panigrahi, C.; Sarangam, V.B.R.; Nadimpally, K.; Thota, N.R. Validation of Empirical Rain rate Models Over a Tropical Coastal Station and an Inland Station in Southern India. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 698–701. [Google Scholar] [CrossRef]
- Reason, C.J.C.; Landman, W.; Tennant, W. Seasonal to Interannual Prediction of Southern African Climate. Meteorol. Atmos. Phys. 2006, 87, 941–955. [Google Scholar]
- Conradie, W.J. Climate Change and Variability: The Impacts on Vineyards and Wine Production in the Western Cape, South Africa. Clim. Res. 2012, 51, 15–25. [Google Scholar] [CrossRef]
Station | Province | Geoclimatic/Geographical Classification | Lat (+/) | Lon(+/−) | Elev (m) | Annual Rainfall (mm) |
---|---|---|---|---|---|---|
Polokwane | Limpopo | Subtropical highland/northern | −23.905 | 29.467 | 1315 | 400–600 |
Nelspruit | Mpumalanga | Subtropical highland/northern | −25.475 | 30.967 | 676 | 750–1000 |
Pretoria | Gauteng | Central plateau/northeastern | −25.733 | 28.183 | 1332 | 500–700 |
Mahikeng | North-West | Semi-arid/northeastern | −25.853 | 25.640 | 1284 | 300–550 |
Upington | Northern Cape | Semi-arid/central western | −28.717 | 24.751 | 1224 | 400–600 |
Bloemfontein | Free State | Arid/central | −29.117 | 26.213 | 1396 | 450–550 |
Durban | KwaZulu Natal | Subtropical coastal /southeastern | −29.858 | 31.000 | 21 | 1000–1200 |
Port Elizabeth | Eastern Cape | Coastal/south | −33.917 | 25.308 | 37 | 600–700 |
Cape Town | Western Cape | Mediterranean coastal/southwestern | −33.917 | 18.425 | 25 | 500–700 |
Season | Period | Characteristics | |
---|---|---|---|
1 | Summer | Dec.–Feb. | Hot and wet with most of the annual rainfall |
2 | Autumn | Mar.–May. | The transition period with gradually cooling temperatures |
3 | Winter | Jun.–Aug. | Usually dry and cool with rainfall in the coastal areas |
4 | Spring | Sep.–Nov. | A gradual rise in temperature which signifies the onset of the rainy season in the central and eastern parts of the country |
Station | Season | Kernel | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Epanechnikov | Gaussian | Triangular | Rectangular | ||||||||||
h | Hr | ISE (E-6) | h | Hr | ISE (E-6) | h | Hr | ISE (E-6) | h | Hr | ISE (E-6) | ||
Polokwane | Autumn | 243.39 | 4869.46 | 7 | 110.26 | 4869.46 | 6 | 184.11 | 4869.46 | 4 | 208.03 | 4869.46 | 9 |
Winter | 286.68 | 4530.86 | 1 | 129.86 | 4530.86 | 6 | 216.85 | 4530.86 | 3 | 245.03 | 4530.86 | 9 | |
Spring | 185.67 | 4991.13 | 19 | 84.11 | 4991.13 | 17 | 140.44 | 4991.13 | 12 | 158.69 | 4991.13 | 22 | |
Summer | 112.95 | 5271.97 | 13 | 51.17 | 5271.97 | 11 | 85.44 | 5271.97 | 7 | 96.54 | 5271.97 | 18 | |
Nelspruit | Autumn | 209.76 | 5098 | 15 | 95.021 | 5098 | 14 | 158.66 | 5098 | 9 | 179.28 | 5098 | 18 |
Winter | 279.66 | 4426.43 | 12 | 126.68 | 4426.43 | 10 | 211.53 | 4426.43 | 7 | 239.02 | 4426.43 | 16 | |
Spring | 276.01 | 4704.61 | 10 | 125.03 | 4704.61 | 9 | 208.77 | 4704.61 | 6 | 235.9 | 4704.61 | 12 | |
Summer | 179.92 | 5133.91 | 10 | 81.5 | 5133.91 | 8 | 136.09 | 5133.91 | 4 | 153.78 | 5133.91 | 13 | |
Pretoria | Autumn | 246.04 | 4776.72 | 9 | 111.45 | 4776.72 | 9 | 186.11 | 4776.72 | 7 | 210.29 | 4776.72 | 10 |
Winter | 279.94 | 4357.36 | 9 | 126.81 | 4357.36 | 8 | 211.75 | 4357.36 | 5 | 239.27 | 4357.36 | 11 | |
Spring | 197.27 | 4899.91 | 9 | 89.36 | 4899.91 | 8 | 149.22 | 4899.91 | 4 | 168.61 | 4899.91 | 11 | |
Summer | 115.55 | 5220.11 | 31 | 52.34 | 5220.11 | 25 | 87.4 | 5220.11 | 17 | 98.76 | 5220.11 | 41 | |
Mahikeng | Autumn | 192.57 | 5095.07 | 11 | 87.23 | 5095.07 | 10 | 145.66 | 5095.07 | 5 | 164.59 | 5095.07 | 14 |
Winter | 265.84 | 4401.02 | 6 | 120.42 | 4401.02 | 6 | 201.08 | 4401.02 | 4 | 227.21 | 4401.02 | 6 | |
Spring | 251.95 | 4718.87 | 10 | 114.13 | 4718.87 | 9 | 190.58 | 4718.87 | 5 | 215.34 | 4718.87 | 12 | |
Summer | 144.47 | 5153.62 | 17 | 65.44 | 5153.62 | 13 | 109.28 | 5153.62 | 7 | 123.48 | 5153.62 | 22 | |
Upington | Autumn | 211.29 | 4978.61 | 21 | 95.71 | 4978.61 | 18 | 159.82 | 4978.61 | 12 | 180.59 | 4978.61 | 25 |
Winter | 284.63 | 4183.98 | 5 | 128.93 | 4183.98 | 4 | 215.3 | 4183.98 | 3 | 243.27 | 4183.98 | 7 | |
Spring | 314.07 | 4466.05 | 11 | 142.26 | 4466.05 | 10 | 237.56 | 4466.05 | 6 | 268.43 | 4466.05 | 13 | |
Summer | 200.19 | 5047.81 | 8 | 90.68 | 5047.81 | 7 | 151.4 | 5047.81 | 4 | 171.11 | 5047.81 | 11 | |
Bloemfotein | Autumn | 219.95 | 4946.63 | 17 | 99.63 | 4946.63 | 15 | 166.37 | 4946.63 | 9 | 187.99 | 4946.63 | 23 |
Winter | 286.6 | 4113.66 | 13 | 129.82 | 4113.66 | 12 | 216.78 | 4113.66 | 9 | 244.95 | 4113.66 | 16 | |
Spring | 320.62 | 4404.93 | 14 | 145.24 | 4404.93 | 13 | 242.52 | 4404.93 | 9 | 274.04 | 4404.93 | 15 | |
Summer | 206.35 | 5013.21 | 8 | 93.47 | 5013.21 | 7 | 156.09 | 5013.21 | 5 | 176.37 | 5013.21 | 10 | |
Durban | Autumn | 246.18 | 4872.66 | 20 | 111.51 | 4872.66 | 19 | 186.21 | 4872.66 | 24 | 210.41 | 4872.66 | 15 |
Winter | 297.83 | 4096.54 | 7 | 134.91 | 4096.54 | 6 | 225.28 | 4096.54 | 4 | 254.55 | 4096.54 | 9 | |
Spring | 350.21 | 4359.18 | 6 | 158.64 | 4359.18 | 5 | 264.9 | 4359.18 | 3 | 299.32 | 4359.18 | 7 | |
Summer | 256 | 4924.1 | 10 | 115.96 | 4924.1 | 10 | 193.64 | 4924.1 | 7 | 218.8 | 4924.1 | 12 | |
Port Elizbe | Autumn | 302.65 | 4564.46 | 3 | 137.09 | 4564.46 | 3 | 228.92 | 4564.46 | 2 | 258.67 | 4564.46 | 3 |
Winter | 380.52 | 3727.71 | 9 | 172.37 | 3727.71 | 9 | 287.83 | 3727.71 | 7 | 325.23 | 3727.71 | 10 | |
Spring | 457.09 | 3791.51 | 6 | 207.06 | 3791.51 | 6 | 345.75 | 3791.51 | 5 | 390.68 | 3791.51 | 7 | |
Summer | 340.15 | 4550 | 9 | 154.08 | 4550 | 8 | 257.3 | 4550 | 5 | 290.73 | 4550 | 11 | |
Cape Town | Autumn | 340.55 | 4290.92 | 9 | 154.27 | 4290.92 | 8 | 257.6 | 4290.92 | 6 | 291.07 | 4290.92 | 11 |
Winter | 444.87 | 3503.34 | 14 | 201.52 | 3503.34 | 12 | 336.51 | 3503.34 | 8 | 380.23 | 3503.34 | 18 | |
Spring | 453.55 | 4017.6 | 11 | 205.45 | 4017.6 | 10 | 343.07 | 4017.6 | 7 | 387.65 | 4017.6 | 13 | |
Summer | 259.24 | 4724.63 | 4 | 117.43 | 4724.63 | 4 | 196.09 | 4724.63 | 2 | 221.58 | 4724.63 | 7 |
Station | Season | Measured Hr (m) | Estimated Hr (m) | Estimated % diff | ITU Hr (m) | ITU % diff |
---|---|---|---|---|---|---|
Polokwane | Autumn | 4816.65 | 4869.46 | 1.10 | 4621 | 4.06 |
Winter | 4459.62 | 4530.86 | 1.60 | 4621 | −3.62 | |
Spring | 4934.11 | 4991.13 | 1.16 | 4621 | 6.35 | |
Summer | 5270.98 | 5271.97 | 0.02 | 4621 | 12.33 | |
Nelspruit | Autumn | 5031.37 | 5098 | 1.32 | 4498 | 10.60 |
Winter | 4387.76 | 4426.43 | 0.88 | 4498 | −2.51 | |
Spring | 4610.02 | 4704.61 | 2.05 | 4498 | 2.43 | |
Summer | 5096.92 | 5133.91 | 0.73 | 4498 | 11.75 | |
Pretoria | Autumn | 4732.67 | 4776.72 | 0.93 | 4539 | 4.09 |
Winter | 4308.06 | 4357.36 | 1.14 | 4539 | −5.36 | |
Spring | 4852.72 | 4899.9 | 0.97 | 4539 | 6.46 | |
Summer | 5216.52 | 5220.39 | 0.07 | 4539 | 12.99 | |
Mahikeng | Autumn | 5030.59 | 5095.07 | 1.28 | 4537 | 9.81 |
Winter | 4368.15 | 4401.02 | 0.75 | 4537 | −3.87 | |
Spring | 4651.5 | 4718.87 | 1.45 | 4537 | 2.46 | |
Summer | 5138.13 | 5153.62 | 0.30 | 4537 | 11.70 | |
Upington | Autumn | 4918.51 | 4978.61 | 1.22 | 4458 | 9.36 |
Winter | 4155.41 | 4183.98 | 0.69 | 4458 | −7.28 | |
Spring | 4387.61 | 4466.05 | 1.79 | 4458 | −1.60 | |
Summer | 5001.5 | 5047.81 | 0.93 | 4458 | 10.87 | |
Bloemfontein | Autumn | 4873.43 | 4946.63 | 1.50 | 4470 | 8.28 |
Winter | 4085.19 | 4113.66 | 0.70 | 4470 | −9.42 | |
Spring | 4326.5 | 4404.93 | 1.81 | 4470 | −3.32 | |
Summer | 4962.84 | 5013.21 | 1.01 | 4470 | 9.93 | |
Durban | Autumn | 4813.44 | 4872.66 | 1.23 | 4085 | 15.13 |
Winter | 4070.6 | 4096.54 | 0.64 | 4085 | −0.35 | |
Spring | 4251.07 | 4359.18 | 2.54 | 4085 | 3.91 | |
Summer | 4848.65 | 4924.1 | 1.56 | 4085 | 15.75 | |
Port Elizbeth | Autumn | 4500.62 | 4564.46 | 1.42 | 3354 | 25.48 |
Winter | 3638.16 | 3727.71 | 2.46 | 3354 | 7.81 | |
Spring | 3656.87 | 3791.51 | 3.68 | 3354 | 8.28 | |
Summer | 4434.47 | 4550 | 2.61 | 3354 | 24.37 | |
Cape Town | Autumn | 4216.26 | 4290.92 | 1.77 | 3123 | 25.93 |
Winter | 3326.86 | 3503.34 | 5.30 | 3123 | 6.13 | |
Spring | 3858.54 | 4017.6 | 4.12 | 3123 | 19.06 | |
Summer | 4673.15 | 4724.63 | 1.10 | 3123 | 33.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawal, Y.B.; Owolawi, P.A.; Tu, C.; Van Wyk, E.; Ojo, J.S. The Kernel Density Estimation Technique for Spatio-Temporal Distribution and Mapping of Rain Heights over South Africa: The Effects on Rain-Induced Attenuation. Atmosphere 2024, 15, 1354. https://doi.org/10.3390/atmos15111354
Lawal YB, Owolawi PA, Tu C, Van Wyk E, Ojo JS. The Kernel Density Estimation Technique for Spatio-Temporal Distribution and Mapping of Rain Heights over South Africa: The Effects on Rain-Induced Attenuation. Atmosphere. 2024; 15(11):1354. https://doi.org/10.3390/atmos15111354
Chicago/Turabian StyleLawal, Yusuf Babatunde, Pius Adewale Owolawi, Chunling Tu, Etienne Van Wyk, and Joseph Sunday Ojo. 2024. "The Kernel Density Estimation Technique for Spatio-Temporal Distribution and Mapping of Rain Heights over South Africa: The Effects on Rain-Induced Attenuation" Atmosphere 15, no. 11: 1354. https://doi.org/10.3390/atmos15111354
APA StyleLawal, Y. B., Owolawi, P. A., Tu, C., Van Wyk, E., & Ojo, J. S. (2024). The Kernel Density Estimation Technique for Spatio-Temporal Distribution and Mapping of Rain Heights over South Africa: The Effects on Rain-Induced Attenuation. Atmosphere, 15(11), 1354. https://doi.org/10.3390/atmos15111354