Comparative Study of CALPUFF and CFD Modeling of Toxic Gas Dispersion in Mountainous Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Assumed Scenario
2.3. Modeling Principles
2.3.1. CALPUFF Model
2.3.2. CFD Principles
2.4. Qualitative and Quantitative Comparative Analysis
2.4.1. Ranges of the LC50 and IDLH
2.4.2. Statistical Performance Measures:FB, NMSE, R, MAE, PBIAS
3. Results
3.1. CALPUFF Simulation
3.2. CFD Numerical Simulation
3.3. Comparative Analysis of LC50 and IDLH Impact Ranges
3.4. Quantitative Analysis of CALPUFF and CFD Experiments
3.5. Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Bin, Z.; Yang, W.; Mao, L. The unfolding of ‘12.23’ Kaixian blowout accident in China. Saf. Sci. 2009, 47, 1107–1117. [Google Scholar] [CrossRef]
- Hou, J.; Gai, W.; Cheng, W.; Deng, Y. Hazardous chemical leakage accidents and emergency evacuation response from 2009 to 2018 in China: A review. Saf. Sci. 2021, 135, 105101. [Google Scholar] [CrossRef]
- Pang, L.; Li, W.; Yang, K.; Meng, L.; Wu, J.; Li, J.; Ma, L.; Chen, S.; Liang, Y. Civil gas energy accidents in China from 2012–2021. J. Saf. Sci. Resil. 2023, 4, 348–357. [Google Scholar] [CrossRef]
- Scire, J.; Strimaitis, D.; Yamartino, R. A User’s Guide for the CALPUFF Dispersion Model; Earth Tech, Inc.: Concord, MA, USA, 2000; Volume 521. [Google Scholar]
- Irwin, J.S.; Scire, J.S.; Strimaitis, D.G. A Comparison of CALPUFF Modeling Results with CAPTEX Field Data Results. In Air Pollution Modeling and Its Application XI; Springer: Boston, MA, USA, 1996; pp. 603–611. [Google Scholar] [CrossRef]
- Dresser, A.L.; Huizer, R.D. CALPUFF and AERMOD Model Validation Study in the Near Field: Martins Creek Revisited. J. Air Waste Manag. Assoc. 2011, 61, 647–659. [Google Scholar] [CrossRef] [PubMed]
- MacIntosh, D.L.; Stewart, J.H.; Myatt, T.A.; Sabato, J.E.; Flowers, G.C.; Brown, K.W.; Hlinka, D.J.; Sullivan, D.A. Use of CALPUFF for exposure assessment in a near-field, complex terrain setting. Atmos. Environ. 2010, 44, 262–270. [Google Scholar] [CrossRef]
- Yang, D.; Li, M.; Liu, H. A Parallel Computing Algorithm for the Emergency-Oriented Atmospheric Dispersion Model CALPUFF. Atmosphere 2022, 13, 2129. [Google Scholar] [CrossRef]
- Brown, K.J. Rocky Flats 1990–91 Winter Validation Tracer Study: Volume 1; USDOE: Washington, DC, USA, 1991. [Google Scholar] [CrossRef]
- Hodgin, C.R.; Smith, M.L. Model Validation Protocol for Determining the Performance of the Terrain-Responsive Atmospheric Code Against the Rocky Flats Plant Winter Validation Study; USDOE: Washington, DC, USA, 1991. [Google Scholar]
- Irwin, J.S.; Hanna, S.R. Characterising uncertainty in plume dispersion models. Int. J. Environ. Pollut. 2005, 25, 16. [Google Scholar] [CrossRef]
- Rood, A.S. Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmos. Environ. 2014, 89, 707–720. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Dong, X.; Zhuang, S.; Fang, S.; Li, H.; Cao, J. Site-targeted evaluation of SWIFT-RIMPUFF for local-scale air dispersion modeling around Sanmen nuclear power plant based on multi-scenario wind tunnel experiments. Ann. Nucl. Energy 2021, 164, 108593. [Google Scholar] [CrossRef]
- Yassin, M.F.; Alhajeri, N.S.; Elmi, A.A.; Malek, M.J.; Shalash, M. Numerical simulation of gas dispersion from rooftop stacks on buildings in urban environments under changes in atmospheric thermal stability. Environ. Monit. Assess. 2021, 193, 22. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Yang, H.; Lin, G.; Dang, W.; Yu, A.; Zhang, J.; Gu, M.; Ge, C. Measurements and predictions of harmful releases of the gathering station over the mountainous terrain. J. Loss Prev. Process Ind. 2021, 71, 104485. [Google Scholar] [CrossRef]
- Zhang, R.; Li, M.; Ma, H. Comparative study on numerical simulation based on CALPUFF and wind tunnel simulation of hazardous chemical leakage accidents. Front. Environ. Sci. 2022, 10, 1025027. [Google Scholar] [CrossRef]
- Mak, J.; Taylor, C.; Fillingham, M.; McEvoy, J. Comparison of the Performance of AERMOD and CALPUFF Dispersion Model Outputs to Monitored Data. In Proceedings of the Air Pollution Modeling and its Application XXVI; Mensink, C., Gong, W., Hakami, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 357–362. [Google Scholar]
- Holnicki, P.; Kałuszko, A.; Trapp, W. An urban scale application and validation of the CALPUFF model. Atmos. Pollut. Res. 2016, 7, 393–402. [Google Scholar] [CrossRef]
- Tartakovsky, D.; Broday, D.M.; Stern, E. Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environ. Pollut. 2013, 179, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Tartakovsky, D.; Stern, E.; Broday, D.M. Comparison of dry deposition estimates of AERMOD and CALPUFF from area sources in flat terrain. Atmos. Environ. 2016, 142, 430–432. [Google Scholar] [CrossRef]
- Jittra, N.; Pinthong, N.; Thepanondh, S. Performance Evaluation of AERMOD and CALPUFF Air Dispersion Models in Industrial Complex Area. Air Soil Water Res. 2015, 8, ASWR.S32781. [Google Scholar] [CrossRef]
- Liu, M.; Yocke, M.A. Siting of Wind Turbine Generators in Complex Terrain. J. Energy, 1980; 4, 1555–5917. [Google Scholar] [CrossRef]
- Radonjic, Z.; Agranat, V.; Telenta, B.; Herbenyk, B.; Chambers, D.; Ritchie, T. Comparison of near-field CFD and CALPUFF modelling results around a backup diesel generating station. In Proceedings of the Air and Waste Management Association—Guideline on Air Quality Models 2013: The Path Forward, Raleigh, NC, USA, 18–21 March 2013; Volume 2, pp. 1080–1111. [Google Scholar]
- Kia, S.; Flesch, T.K.; Freeman, B.S.; Aliabadi, A.A. Calculating gas emissions from open-pit mines using inverse dispersion modelling: A numerical evaluation using CALPUFF and CFD-LS. J. Wind Eng. Ind. Aerodyn. 2022, 226, 105046. [Google Scholar] [CrossRef]
Parameter Type | Parameter Name | Value |
---|---|---|
Source attributes | UTM coordinates (km) | (234.877 3473.580) |
Pollutant | ||
Pollutant volume concentration | 9.73% | |
Chimney height (m) | 0 | |
Outlet initial velocity (m/s) | 1 | |
Emission rate (g/s) | 0.49 s: 300,000 50–184 s: 190,000 after 185 s: 0 | |
Diffusion type | Point source | |
Meteorological parameters | Air velocity (m/s) | 0, 1, 2, 3 |
Wind direction (°) | 0, 90, 180, 270 | |
Temperature (°C) | 7 | |
Simulation time setting | Wind field time step (s) | 3600 |
Concentration field time step (s) | 60 | |
Total duration (h) | 2 | |
Simulation range setting | X-direction length (km) | 10 |
Y-direction length (km) | 10 | |
Grid size (m) | 50 |
Boundary Name | Boundary Type | Parameter Value |
---|---|---|
Source vent | Concentration and speed | Concentration was controlled using a segmented function with a leak rate of 1 m/s. The leak concentration was mol/m3 from 0 to 50 s, and from 50 to 185 s. After 185 s, there was no leak. |
Ground | Zero flux | No slip and no flow boundary, soil material |
Outer wall of the source | Zero flux | No slip |
West inlet | Speed and Pressure | For the velocity boundary, use 0.1, 1, 2, or 3 m/s. For the pressure boundary, use 0 gauge pressure. |
North inlet | Speed and pressure | Same as above |
South inlet | Speed and pressure | Same as above |
East inlet | Speed and pressure | Same as above |
Top | Pressure | Gauge pressure is 0 |
Scenario | CALPUFF | COMSOL | Error (CALPUFF-COMSOL) | |||
---|---|---|---|---|---|---|
(m) | IDLH (m) | (m) | IDLH (m) | (m) | IDIH (m) | |
Calm | 766 | 847 | 682 | 914 | 84 | −67 |
North 1 m/s | 1042 | 1121 | 938 | 1196 | 104 | −75 |
East 1 m/s | 1744 | 2022 | 1861 | 2147 | −117 | −125 |
South 1 m/s | 2542 | 2698 | 2473 | 2713 | 69 | −15 |
West 1 m/s | 1052 | 1391 | 1214 | 1365 | 162 | 35 |
North 2 m/s | 1052 | 1283 | 1132 | 1369 | −80 | −86 |
East 2 m/s | 1532 | 1756 | 1681 | 1981 | −149 | −225 |
South 2 m/s | 2002 | 2604 | 2069 | 2338 | −67 | 266 |
West 2 m/s | 1781 | 1926 | 1801 | 2003 | −20 | −77 |
North 3 m/s | 821 | 1031 | 855 | 1050 | −34 | −19 |
East 3 m/s | 1323 | 1572 | 1167 | 1422 | −156 | −150 |
South 3 m/s | 1919 | 2279 | 1945 | 2242 | 26 | 37 |
West 3 m/s | 1610 | 1677 | 1582 | 1752 | 28 | −75 |
Simulation Scheme | FB | NMSE | R | MAE | PBIAS |
---|---|---|---|---|---|
Calm | 1.74 | 3.54 | 0.44 | 0.68 | 1364.58 |
North 1 m/s | 0.09 | 0.44 | 0.05 | 0.14 | 9.22 |
East 1 m/s | −0.44 | 0.08 | 0.22 | 0.38 | −35.78 |
South 1 m/s | 1.72 | 25.13 | 0.17 | 3.21 | 1248.93 |
West 1 m/s | 1.89 | 9.67 | 0.57 | 2.03 | 3515.17 |
North 2 m/s | 0.51 | 1.97 | 0.02 | 0.20 | 69.62 |
East 2 m/s | −0.29 | 0.12 | 0.26 | 0.25 | −25.31 |
South 2 m/s | 1.46 | 10.78 | 0.21 | 1.53 | 539.76 |
West 2 m/s | 1.58 | 6.03 | 0.05 | 0.96 | 750.78 |
North 3 m/s | 0.78 | 3.41 | 0.16 | 0.20 | 127.88 |
East 3 m/s | 0.28 | 0.23 | 0.29 | 0.21 | 32.08 |
South 3 m/s | 1.14 | 10.18 | 0.23 | 1.18 | 479.84 |
West 3 m/s | 1.70 | 11.94 | 0.29 | 1.21 | 1167.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Lo, C.; Yang, D.; Li, Y.; Li, Z. Comparative Study of CALPUFF and CFD Modeling of Toxic Gas Dispersion in Mountainous Environments. Atmosphere 2024, 15, 1370. https://doi.org/10.3390/atmos15111370
Li M, Lo C, Yang D, Li Y, Li Z. Comparative Study of CALPUFF and CFD Modeling of Toxic Gas Dispersion in Mountainous Environments. Atmosphere. 2024; 15(11):1370. https://doi.org/10.3390/atmos15111370
Chicago/Turabian StyleLi, Mei, Choho Lo, Dongou Yang, Yuanchen Li, and Zhe Li. 2024. "Comparative Study of CALPUFF and CFD Modeling of Toxic Gas Dispersion in Mountainous Environments" Atmosphere 15, no. 11: 1370. https://doi.org/10.3390/atmos15111370
APA StyleLi, M., Lo, C., Yang, D., Li, Y., & Li, Z. (2024). Comparative Study of CALPUFF and CFD Modeling of Toxic Gas Dispersion in Mountainous Environments. Atmosphere, 15(11), 1370. https://doi.org/10.3390/atmos15111370