Bicentennial Volcanic Activity Cycles and Their Long-Term Impact on Northern Hemisphere Climate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreu-Hayles, L.; Leland, C. Dendrochronology, progress. In Encyclopedia of Scientific Dating Methods; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–12. [Google Scholar] [CrossRef]
- Raspopov, O.M.; Dergachev, V.A.; Esper, J.; Kozyreva, O.V.; Frank, D.; Ogurtsov, M.; Shao, X. The influence of the de Vries (∼200-year) solar cycle on climate variations: Results from the Central Asian Mountains and their global link. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 259, 6–16. [Google Scholar] [CrossRef]
- Ogurtsov, M.; Veretenenko, S.; Lindholm, M.; Jalkanen, R. Possible solar-climate imprint in temperature proxies from the middle and high latitudes of North America. Adv. Space Res. 2016, 57, 1112–1117. [Google Scholar] [CrossRef]
- Liu, X.Q.; Dong, H.L.; Yang, X.D.; Herzschuh, U.; Zhang, E.L.; Stuut, J.B.W.; Wang, Y.B. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai–Tibetan Plateau. Earth Planet. Sci. Lett. 2009, 280, 276–284. [Google Scholar] [CrossRef]
- Novello, V.F.; Vuille, M.; Cruz, F.W.; Stríkis, N.M.; de Paula, M.S.; Edwards, R.L.; Cheng, H.; Karmann, I.; Jaqueto, P.F.; Trindade, R.I.F.; et al. Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites. Sci. Rep. 2016, 6, 24762. [Google Scholar] [CrossRef]
- Ogurtsov, M. Long-term variability of summer temperature in the southern part of South America – is there a connection with changes in solar activity? Atmosphere 2022, 13, 1360. [Google Scholar] [CrossRef]
- Ogurtsov, M. Study on possible solar influence on the climate of the Southern Hemisphere. Atmosphere 2022, 13, 680. [Google Scholar] [CrossRef]
- Breitenmoser, P.; Beer, J.; Brönnimann, S.; Frank, D.; Steinhilber, F.; Wanner, H. Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 313–314, 127–139. [Google Scholar] [CrossRef]
- Schneider, L.; Smerdon, J.E.; Büntgen, U.; Myglan, V.; Kirdyanov, A.V.; Esper, J. Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophys. Res. Lett. 2015, 42, 4556–4562. [Google Scholar] [CrossRef]
- Wilson, R.; Anchukaitis, K.; Briffa, K.; Büntgen, U.; Cook, E.; D’Arrigo, R. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quat. Sci. Rev. 2016, 134, 1–18. [Google Scholar] [CrossRef]
- Guillet, S.; Corona, C.; Stoffel, M.; Khodri, M.; Lavigne, F.; Ortega, P.; Eckert, N.; Sielenou, P.D.; Daux, V.; Churakova (Sidorova), O.V.; et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci. 2017, 10, 123–128. [Google Scholar] [CrossRef]
- Büntgen, U.; Allen, K.; Anchukaitis, K.J.; Arseneault, D.; Boucher, E.; Chatterjee, S. The influence of decision-making in tree ring-based climate reconstructions. Nat. Commun. 2021, 12, 3411. [Google Scholar] [CrossRef] [PubMed]
- Neukom, R.; Gergis, J.; Karoly, D.J.; Wanner, H.; Curran, M.; Elbert, J.; González-Rouco, F.; Linsley, B.K.; Moy, A.D.; Mundo, I.; et al. Inter-hemispheric temperature variability over the last millennium. Nat. Clim. Change 2014, 4, 362–367. [Google Scholar] [CrossRef]
- PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 2019, 12, 643–649. [Google Scholar] [CrossRef]
- Gao, C.; Robock, A.; Ammann, C. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res. 2008, 113, D23111. [Google Scholar] [CrossRef]
- Crowley, T.; Unterman, M. Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst. Sci. Data 2013, 5, 187–197. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Ebisuzaki, W. A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated. J. Clim. 1997, 10, 2147–2153. [Google Scholar] [CrossRef]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.-H.; Deyle, E.; Fogarty, M.; Munch, S. Detecting causality in complex ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef]
- Poluianov, S.; Usoskin, I. Critical Analysis of a Hypothesis of the Planetary Tidal Influence on Solar Activity. Sol. Phys. 2014, 289, 2333–2342. [Google Scholar] [CrossRef]
- Ma, L.; Vaquero, J.M. New evidence of the Suess/de Vries cycle existing in historical naked-eye observations of sunspots. Open Astron. 2020, 29, 28–31. [Google Scholar] [CrossRef]
- Vaquero, J.M.; Gallego, M.C.; García, J.A. A 250-year cycle in naked-eye observations of sunspots Geophys. Res. Lett. 2002, 29, 58-1–58-4. [Google Scholar] [CrossRef]
- Bard, E.; Raisbeck, G.; Yiou, F.; Jouzel, J. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B Chem. Phys. Meteorol. 2000, 52, 985–992. [Google Scholar] [CrossRef]
- Delaygue, G.; Bard, E. An Antarctic view of Beryllium-10 and solar activity for the past millennium. Clim. Dyn. 2011, 36, 2201–2218. [Google Scholar] [CrossRef]
- Steinhilber, F.; Abreu, J.A.; Beer, J.; Brunner, I.; Christl, M.; Fischer, H.; Heikkilä, U.; Kubik, P.W.; Mann, M.; McCracken, K.G.; et al. 9400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Nat. Acad. Sci. USA 2012, 109, 5967–5971. [Google Scholar] [CrossRef]
- Roth, R.; Joos, F. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: Implications of data and model uncertainties. Clim. Past 2013, 9, 1879–1909. [Google Scholar] [CrossRef]
- Egorova, T.; Schmutz, W.; Rozanov, E.; Shapiro, A.I.; Usoskin, I.; Beer, J.; Tagirov, R.V.; Peter, T. Revised historical solar irradiance forcing. Astron. Astrophys. 2018, 615, A85. [Google Scholar] [CrossRef]
- Usoskin, I.; Solanki, S.; Krivova, N.; Hofer, B.; Kovaltsov, G.A.; Wacker, L.; Brehm, N.; Kromer, B. Solar cyclic activity over the last millennium reconstructed from annual 14C data. Astron. Astrophys. 2021, 649, A141. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical methods for research workers. In Breakthroughs in Statistics; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 1925; Oliver and Boyd, Edinburgh. [Google Scholar]
- Gleckler, P.; Achutarao, K.; Gregory, J.; Santer, B.D.; Taylor, K.E.; Wigley, T.M. Krakatoa lives: The effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys. Res. Lett. 2006, 33, L17702. [Google Scholar] [CrossRef]
- Zhong, Y.; Miller, G.; Otto-Bliesner, B.; Holland, M.M.; Bailey, D.A.; Schneider, D.P.; Geirsdottir, A. Centennial-scale climate change from decadally-paced explosive volcanism: A coupled sea ice-ocean mechanism. Clim. Dyn. 2011, 37, 2373–2387. [Google Scholar] [CrossRef]
- McGregor, H.V.; Evans, M.N.; Goosse, H.; Leduc, G.; Martrat, B.; Addison, J.A.; Mortyn, P.G.; Oppo, D.W.; Seidenkrantz, M.S.; Sicre, M.A.; et al. Robust global ocean cooling trend for the pre-industrial Common Era. Nat. Geosci. 2015, 8, 671–677. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Climate Change 2021—The Physical Science Basis Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; pp. 553–672. Available online: https://www.cambridge.org/core/books/climate-change-2021-the-physical-science-basis/future-global-climate-scenariobased-projections-and-nearterm-information/309359EDDCFABB031C078AE20CEE04FD (accessed on 1 January 2024.).
- Baldini, J.; Brown, R.; Mcelwaine, J. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism? Sci. Rep. 2015, 5, 17442. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.H.; Geirsdóttir, Á.; Zhong, Y.; Larsen, D.J.; Otto-Bliesner, B.L.; Holland, M.M.; Bailey, D.A.; Refsnider, K.A.; Lehman, S.J.; Southon, J.R.; et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 2012, 39, L02708. [Google Scholar] [CrossRef]
- Waple, A.M.; Mann, M.E.; Bradley, R.S. Long-term patterns of solar irradiance forcing in model experiments and proxy- based surface temperature reconstructions. Clim. Dynam. 2002, 18, 563–657. [Google Scholar] [CrossRef]
- Monerie, P.-A.; Moine, M.-P.; Terray, L.; Valcke, S. Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature Environ. Res. Lett. 2017, 12, 054010. [Google Scholar] [CrossRef]
- Wilmes, S.B.; Raible, C.C.; Stocker, T.F. Climate variability of the mid- and high-latitudes of the Southern Hemisphere in ensemble simulations from 1500 to 2000 AD. Clim. Past 2012, 8, 373–390. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Manabe, S.; Bryan, K. Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature 1989, 342, 660–662. [Google Scholar] [CrossRef]
- Chim, M.M.; Aubry, T.J.; Abraham, N.L.; Marshall, L.; Mulcahy, J.; Walton, J.; Schmidt, A. Climate projections very likely underestimate future volcanic forcing and its climatic effects. Geophys. Res. Lett. 2023, 50, e2023GL103743. [Google Scholar] [CrossRef]
Source | Abbreviation | Time Span | Reconstructed Value | Geographic Area | Data Type |
---|---|---|---|---|---|
Crowley and Unterman [16] | SLF | 501–2000 | aerosol optical depth | Greenland, Antarctica | SO4 concentration, conductivity, 21 records |
Gao et al. [15] | AOD | 800–2000 | stratospheric sulfate aerosol injection | Greenland, Antarctica | SO4 concentration, conductivity, 36 records |
Schneider et al. [9] | NHS | 600–2002 | June–August temperature | Extratropical part of the Hemisphere (Φ > 30° N) | Tree-ring (MXD), 15 regional records |
Wilson et al. [10] | NHW | 800–2010 | May–August temperature | Northern Hemisphere | Tree-ring (MXD), 54 records |
Guillet et al. [11] | NHG | 500–2000 | June–August temperature | Northern Hemisphere | Multi-proxy (TRW, MXD, δ18O), 27 records |
Büntgen et al. [12] | NHB | 1–2016 | June–August temperature | Northern Hemisphere | TRW, 9 regional records |
The median of the full ensemble of the PAGES2k [14] | GLB | 1–2017 | Annual | Globe | Multi-proxy (TRW, MXD, ice core, corals, historic documents, sediments, boreholes, speleothems) 692 individual records |
Neukom et al. [13] | SHN | May–April temperature | Southern Hemisphere | Multi-proxy (TRW, MXD, ice core, corals, historic documents, sediments), 111 individual records |
Source | Temperature in the NH [9] | Temperature in the NH [10] | Temperature in the NH [11] | Temperature in the NH [12] | Global Temperature [14] | Temperature in the SH [13] |
---|---|---|---|---|---|---|
Sulfate injection [15] | −0.38 ** (0.21) | −0.67 * (0.011) | −0.05 *** (0.75) | −0.55 *** (0.039) | −0.35 *** (0.174) | 0.30 + (0.292) |
Aerosol optical depth [16] | −0.43 * (0.137) | −0.68 * (0.009) | −0.06 * (0.87) | −0.61 * (0.018) | −0.43 * (0.123) | 0.09 + (0.703) |
Source | Temperature in the NH [9] | Temperature in the NH [10] | Temperature in the NH [11] | Temperature in the NH [12] | Global Temperature [14] | Temperature in the SH [13] |
---|---|---|---|---|---|---|
Sulfate injection [15] | −0.52 (0.078) | −0.70 (0.027) | −0.38 (0.191) | −0.58 (0.067) | −0.50 (0.131) | −0.05 (0.901) |
Aerosol optical depth [16] | −0.59 (0.068) | −0.72 (0.021) | −0.50 (0.113) | −0.72 (0.019) | −0.58 (0.068) | −0.20 (0.534) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogurtsov, M. Bicentennial Volcanic Activity Cycles and Their Long-Term Impact on Northern Hemisphere Climate. Atmosphere 2024, 15, 1373. https://doi.org/10.3390/atmos15111373
Ogurtsov M. Bicentennial Volcanic Activity Cycles and Their Long-Term Impact on Northern Hemisphere Climate. Atmosphere. 2024; 15(11):1373. https://doi.org/10.3390/atmos15111373
Chicago/Turabian StyleOgurtsov, Maxim. 2024. "Bicentennial Volcanic Activity Cycles and Their Long-Term Impact on Northern Hemisphere Climate" Atmosphere 15, no. 11: 1373. https://doi.org/10.3390/atmos15111373
APA StyleOgurtsov, M. (2024). Bicentennial Volcanic Activity Cycles and Their Long-Term Impact on Northern Hemisphere Climate. Atmosphere, 15(11), 1373. https://doi.org/10.3390/atmos15111373