Determination of Polycyclic Aromatic Hydrocarbons from Atmospheric Deposition in Malva sylvestris Leaves Using Gas Chromatography with Mass Spectrometry (GC-MS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Collection
2.3. Extraction of PAHs from Dust Deposited on Malva sylvestris Leaves
2.4. Instrumental Analysis of PAHs by GC-MS
3. Results and Discussion
3.1. Optimization of PAHs Extraction Conditions
3.2. Analytical Parameters
3.3. Analysis of Leave Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef]
- Human Health Effects of Polycyclic Aromatic Hydrocarbons as Ambient Air Pollutants: Report of the Working Group on Polycyclic Aromatic Hydrocarbons of the Joint Task Force on the Health Aspects of Air Pollution; WHO Regional Office for Europe: Copenhagen, Denmark, 2021; Available online: https://www.who.int/europe/publications/i/item/9789289056533 (accessed on 1 October 2024).
- IARC. Agents Classified by the IARC Monographs, Volumes 1–135; IARC: Lyon, France, 2023; Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 2 October 2024).
- Council and European Parliament. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of December 16, 2008, on Classification, Labeling and Packaging of Substances and Mixtures Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006. OJ L 2008, 353, 1–1355. [Google Scholar]
- World Health Organization. Air Quality Guidelines. Global Update 2005; WHO Regional Publications: Copenhagen, Denmark, 2006; Available online: https://www.who.int/publications/i/item/WHO-SDE-PHE-OEH-06.02 (accessed on 3 October 2024).
- European Commission. Commission Regulation (EU) 2023/915 of April 25, 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. OJ L 2023, 119, 103–157. [Google Scholar]
- Alexander, J.; Benford, D.; Cockburn, A.; Cravedi, J.P.; Dogliotti, E.; Di Domenico, A.; Fernández-Cruz, M.L.; Fink-Gremmels, J.; Fürst, P.; Galli, C. Polycyclic Aromatic Hydrocarbons in Food: Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J 2008, 724, 1–114. [Google Scholar]
- Li, Q.; Li, Y.; Zhu, L.; Xing, B.; Chen, B. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-Structures of Cuticular Waxes. Sci. Rep. 2017, 7, 46235. [Google Scholar] [CrossRef]
- Istituto Superiore Di Sanità. Presenza Degli Idrocarburi Policiclici Aromatici Negli Alimenti. Beatrice Bocca, Riccardo Crebelli, Edoardo Menichini; Rapporti ISTISAN 03/22; Istituto Superiore Di Sanità: Roma, Italy, 2003; 45p. [Google Scholar]
- Jia, J.; Bi, C.; Zhang, J.J.; Chen, Z. Atmospheric Deposition and Vegetable Uptake of Polycyclic Aromatic Hydrocarbons (PAHs) Based on Experimental and Computational Simulations. Atmos. Environ. 2019, 204, 135–141. [Google Scholar] [CrossRef]
- Culotta, L.; Gianguzza, A.; Orecchio, S. Leaves of Nerium Oleander L. as Bioaccumulators of Polycyclic Aromatic Hydrocarbons (PAH) in the Air of Palermo (Italy): Extraction and GC-MS Analysis, Distribution and Sources. Polycycl. Aromat. Comp. 2005, 25, 327–344. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Dutta, R.; Das, P. A Critical Review on Plant Biomonitors for Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Air Through Solvent Extraction Techniques. Chemosphere 2020, 251, 126441. [Google Scholar] [CrossRef]
- Protano, C.; Guidotti, M.; Owczarek, M.; Fantozzi, L.; Blasi, G.; Vitali, M. Polycyclic Aromatic Hydrocarbons and Metals in Transplanted Lichen (Pseudovernia furfuracea) at Sites Adjacent to a Solid-Waste Landfill in Central Italy. Arch. Environ. Contam. Toxicol. 2014, 66, 471–481. [Google Scholar] [CrossRef]
- Guidotti, M.; Stella, D.; Dominici, C.; Blasi, G.; Owczarek, M.; Vitali, M.; Protano, C. Monitoring of Traffic-Related Pollution in a Province of Central Italy with Transplanted Lichen Pseudovernia furfuracea. Bull. Environ. Contam. Toxicol. 2009, 83, 852–858. [Google Scholar] [CrossRef]
- Frontasyeva, M.; Harmens, H.; Uzhinskiy, A.; Chaligava, O. Mosses as Biomonitors of Air Pollution: 2015/2016 Survey on Heavy Metals, Nitrogen and POPs in Europe and Beyond. Doctoral Thesis, PatriNat (OFB-CNRS-MNHN), Paris, France, 2020. Available online: http://www1.jinr.ru/Books/REPORT-Frontasyeva_sait.pdf (accessed on 5 October 2024).
- Blasco, M.; Domeño, C.; Nerín, C. Lichens Biomonitoring as Feasible Methodology to Assess Air Pollution in Natural Ecosystems: Combined Study of Quantitative PAHs Analyses and Lichen Biodiversity in the Pyrenees Mountains. Anal. Bioanal. Chem. 2008, 391, 759–771. [Google Scholar] [CrossRef]
- De Nicola, F.; Maisto, G.; Prati, M.V.; Alfani, A. Temporal Variations in PAH Concentrations in Quercus Ilex L. (Holm oak) Leaves in an Urban Area. Chemosphere 2005, 61, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Orecchio, S. PAHs Associated with the Leaves of Quercus ilex L.: Extraction, GC–MS Analysis, Distribution and Sources: Assessment of Air Quality in the Palermo (Italy) Area. Atmos. Environ. 2007, 41, 8669–8680. [Google Scholar] [CrossRef]
- Viteri, F.; Sánchez, N.E.; Alexandrino, K. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Leaf and Bark Samples of Sambucus Nigra Using High-Performance Liquid Chromatography (HPLC). Methods Protoc. 2023, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Orecchio, S.; Gianguzza, A.; Culotta, L. Absorption of Polycyclic Aromatic Hydrocarbons by Pinus Bark: Analytical Method and Use for Environmental Pollution Monitoring in the Palermo Area (Sicily, Italy). Environ. Res. 2008, 107, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Hashemi, S.A.; Behbudi, G.; Mazraedoost, S.; Omidifar, N.; Gholami, A.; Chiang, W.-H.; Babapoor, A.; Pynadathu Rumjit, N. A Review on Health Benefits of Malva sylvestris L. Nutritional Compounds for Metabolites, Antioxidants, and Anti-Inflammatory, Anticancer, and Antimicrobial Applications. Evid. Based Complement. Alternat. Med. 2021, 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Razavi, S.M.; Zarrini, G.; Molavi, G.; Ghasemi, G. Bioactivity of Malva sylvestris L., a Medicinal Plant from Iran. Iran. J. Basic Med. Sci. 2011, 14, 574. [Google Scholar]
- Batiha, G.E.-S.; Tene, S.T.; Teibo, J.O.; Shaheen, H.M.; Oluwatoba, O.S.; Teibo, T.K.A.; Al-Kuraishy, H.M.; Al-Garbee, A.I.; Alexiou, A.; Papadakis, M. The Phytochemical Profiling, Pharmacological Activities, and Safety of Malva sylvestris: A Review. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 421–440. [Google Scholar] [CrossRef]
- Terzi, M.; Acemi, A.; Ergül, H.A.; Özen, F. PAH and PCB Levels in Malva sylvestris L. Specimens Collected from Kocaeli, Turkey. Biomonitoring. 2016, 2, 42–46. [Google Scholar] [CrossRef]
- Terzi, M.; Acemi, A.; Ergül, H.A.; Özen, F. PAH/PCB Levels in Malva sylvestris from Different Spots of Kocaeli, Turkey. Available online: https://www.researchgate.net/publication/235982185_PAHPCB_Levels_in_Malva_sylvestris_from_Different_Spots_of_Kocaeli_Turkey (accessed on 1 October 2024).
- Unver, M.C.; Ugulu, I.; Durkan, N.; Baslar, S.; Dogan, Y. Heavy Metal Contents of Malva sylvestris Sold as Edible Greens in the Local Markets of Izmir. Ekoloji Dergisi. 2015, 24, 96. [Google Scholar] [CrossRef]
- Settimo, G.; Soggiu, M.E.; Inglessis, M.; Marsili, G.; Avino, P. Persistent Organic Pollutants and Metals in Atmospheric Deposition Rates around the Port-Industrial Area of Civitavecchia, Italy. Appl. Sci. 2021, 11, 1827. [Google Scholar] [CrossRef]
- Menichini, E.; Settimo, G.; Viviano, G. Metodi per La Determinazione Di Arsenico, Cadmio, Nichel e Idrocarburi Policiclici Aromatici Nelle Deposizioni Atmosferiche; Rapporto ISTISAN 06/38; Istituto Superiore di Sanità: Roma, Italy, 2006. [Google Scholar]
- Wenzl, T.; Haedrich, J.; Schaechtele, A.; Piotr, R.; Stroka, J.; Eppe, G.; Scholl, G. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Food and Feed; European Union: Brussels, Belgium, 2016; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC102946 (accessed on 10 October 2024).
- Yang, M.; Tian, S.; Liu, Q.; Yang, Z.; Yang, Y.; Shao, P.; Liu, Y. Determination of 31 Polycyclic Aromatic Hydrocarbons in Plant Leaves Using Internal Standard Method with Ultrasonic Extraction–Gas Chromatography–Mass Spectrometry. Toxics 2022, 10, 634. [Google Scholar] [CrossRef] [PubMed]
- Camargo, M.C.R.; Toledo, M.C.F. Polycyclic Aromatic Hydrocarbons in Brazilian Vegetables and Fruits. Food Control 2003, 14, 49–53. [Google Scholar] [CrossRef]
- Soceanu, A.; Dobrinas, S.; Stanciu, G.; Popescu, V. Polycyclic Aromatic Hydrocarbons in Vegetables Grown in Urban and Rural Areas. Environ. Eng. Manag. J. 2014, 13, 2311–2315. [Google Scholar]
- Rey-Salgueiro, L.; Martínez-Carballo, E.; García-Falcón, M.S.; Simal-Gándara, J. Effects of a Chemical Company Fire on the Occurrence of Polycyclic Aromatic Hydrocarbons in Plant Foods. Food Chem. 2008, 108, 347–353. [Google Scholar] [CrossRef]
- Ianiri, G.; Settimo, G.; Avino, P. Atmospheric Bulk Depositions: State-of-the-Art and European Legislative Framework with Focus on Italy. Environ. Sci. Pollut. Res. 2024, 1–19. [Google Scholar] [CrossRef]
- Fiolet, T.; Nicolas, G.; Casagrande, C.; Horvath, Z.; Frenoy, P.; Weiderpass, E.; Gunter, M.J.; Manjer, J.; Sonestedt, E.; Palli, D.; et al. Dietary Intakes of Dioxins and Polychlorobiphenyls (PCBs) and Mortality: EPIC Cohort Study in 9 European Countries. Int. J. Hyg. Environ. Health 2024, 255, 114287. [Google Scholar] [CrossRef]
- Kiani, A.; Arabameri, M.; Shariatifar, N.; Mehraie, A.; Tooryan, F.; Ghanbariasad, A.; Shahsavari, S. Analysis of Polychlorinated Biphenyls (PCBs) in Dairy Products by Modified QuEChERS/GC-QqQ-MS/MS Method: A Risk Assessment Study. Food Sci. Nutr. 2023, 11, 2895–2906. [Google Scholar] [CrossRef]
- ARPA Sicilia. Effetti Sulla Qualità Dell’aria Degli Incendi Iniziati Il 24 Luglio 2023 Nell’Agglomerato Di Palermo. Aggiornamento Ai Dati Rilevati al 26 Luglio Alle Ore 07:00 and Other Documents Herein. Available online: https://www.arpa.sicilia.it/Incendio-Discarica-Bellolampo-Del-24-Luglio-2023/ (accessed on 9 October 2024).
- Roszko, M.Ł.; Juszczyk, K.; Szczepańska, M.; Świder, O.; Szymczyk, K. Background Levels of Polycyclic Aromatic Hydrocarbons and Legacy Organochlorine Pesticides in Wheat Sampled in 2017 and 2018 in Poland. Environ. Monit. Assess. 2020, 192, 1–17. [Google Scholar] [CrossRef]
- Özen, F.; Acemi, A.; Pelin, E.G.; Ergül, H.A. Assessment of Macrophyte Plant Distribution and PAH Contamination in Selected Aquatic Habitats from an Industrialized City; Kocaeli, Turkey. Biomonitoring 2017, 4, 27–33. [Google Scholar] [CrossRef]
Compound | Retention Time (min) | Benzene Rings | M+ (m/z) | Q1 (m/z) | Q2 (m/z) |
---|---|---|---|---|---|
NA | 17.5 | 2 | 128 | 127 | 102 |
ACL | 25.7 | 3 | 152 | 151 | 76 |
AC | 26.4 | 3 | 153 | 154 | 76 |
FL | 28.8 | 3 | 166 | 165 | 82 |
PHE | 34.2 | 3 | 178 | 176 | 152 |
AN | 34.4 | 3 | 178 | 176 | 152 |
FA | 40.4 | 4 | 202 | 200 | 101 |
PY | 41.9 | 4 | 202 | 200 | 101 |
BaA | 47.9 | 4 | 228 | 226 | 113 |
CHR-D12 | 48.2 | 4 | 240 | 120 | - |
CHR | 48.3 | 4 | 228 | 226 | 113 |
BbFA | 55.3 | 5 | 252 | 253 | 126 |
BjFA | 55.5 | 5 | 252 | 253 | 126 |
BkFA | 55.8 | 5 | 252 | 253 | 126 |
BaP | 59.3 | 5 | 252 | 253 | 126 |
PE-D12 | 60.3 | 5 | 264 | 132 | - |
IP | 69.2 | 6 | 276 | 138 | - |
Compound | DCM | n-Pentane | Hexane | Cyclohexane | Toluene |
---|---|---|---|---|---|
NA | 42.8 ± 2.4 | 110.0 ± 16.2 | 25.2 ± 6.1 | 69.6 ± 8.7 | 5.1 ± 0.9 |
ACL | 41.0 ± 6.1 | 47.5 ± 7.3 | 24.1 ± 6.2 | 66.7 ± 2.9 | 4.2 ± 1.2 |
AC | 11.4 ± 4.2 | 13.4 ± 1.9 | 7.3 ± 1.8 | 65.8 ± 3.2 | 7.3 ± 0.8 |
FL | 29.4 ± 6.6 | 36.1 ± 7.2 | 14.7 ± 5.0 | 71.2 ± 10.3 | 7.1 ± 1.1 |
PHE | 44.8 ± 15.8 | 63.9 ± 12.3 | 25.3 ± 7.0 | 83.7 ± 6.7 | 49.0 ± 2.6 |
AN | 47.1 ± 16.5 | 60.9 ± 11.6 | 27.4 ± 7.4 | 104.2 ± 16.9 | 40.4 ± 1.8 |
FA | 39.8 ± 14.5 | 57.7 ± 12.3 | 23.0 ± 6.9 | 75.3 ± 5.9 | 71.9 ± 7.8 |
PY | 38.3 ± 14.6 | 55.6 ± 12.0 | 22.3 ± 6.9 | 73.5 ± 9.7 | 57.0 ± 13.5 |
BaA | 33.5 ± 9.6 | 48.9 ± 11.8 | 22.2 ± 7.4 | 93.5 ± 12.9 | 12.5 ± 1.5 |
CHR | 26.9 ± 2.3 | 34.9 ± 7.9 | 13.7 ± 8.8 | 102.1 ± 7.6 | 86.8 ± 16.0 |
BbFA | 35.9 ± 3.5 | 56.7 ± 14.5 | 20.2 ± 6.9 | 81.5 ± 3.3 | - |
BjFA | 35.9 ± 4.0 | 59.5 ± 15.0 | 21.9 ± 7.2 | 83.4 ± 2.4 | - |
BkFA | 36.1 ± 5.5 | 57.5 ± 14.8 | 21.3 ± 6.9 | 79.6 ± 3.5 | - |
BaP | 33.5 ± 6.1 | 46.5 ± 12.6 | 19.3 ± 7.2 | 78.3 ± 1.6 | - |
IP | 21.8 ± 2.8 | 23.8 ± 6.4 | 15.1 ± 5.6 | 62.3 ± 4.4 | - |
Compound | 2 min | 10 min | 20 min |
---|---|---|---|
NA | 97.5 ± 1.0 | 87.4 ± 2.3 | 93.3 ± 12.4 |
ACL | 77.4 ± 3.2 | 77.7 ± 11.9 | 74.5 ± 3.0 |
AC | 61.3 ± 1.0 | 61.4 ± 3.2 | 60.8 ± 0.5 |
FL | 59.9 ± 3.6 | 61.9 ± 9.5 | 55.6 ± 2.2 |
PHE | 91.3 ± 9.2 | 97.4 ± 5.6 | 83.8 ± 3.6 |
AN | 108.1 ± 5.5 | 112.0 ± 10.0 | 100.0 ± 6.4 |
FA | 82.9 ± 6.3 | 88.0 ± 6.7 | 76.7 ± 1.8 |
PY | 80.4 ± 5.7 | 84.6 ± 6.3 | 75.1 ± 2.3 |
BaA | 65.5 ± 3.6 | 67.2 ± 3.2 | 67.9 ± 1.4 |
CHR | 95.5 ± 4.4 | 96.2 ± 5.2 | 99.3 ± 7.4 |
BbFA | 83.4 ± 3.3 | 85.8 ± 3.6 | 79.8 ± 8.9 |
BjFA | 85.9 ± 2.8 | 88.9 ± 4.3 | 82.9 ± 8.8 |
BkFA | 83.5 ± 2.9 | 86.4 ± 4.5 | 80.5 ± 8.5 |
BaP | 68.3 ± 3.5 | 69.7 ± 3.8 | 70.1 ± 2.5 |
IP | 60.7 ± 4.0 | 64.4 ± 2.1 | 62.0 ± 6.0 |
Compound | 400 ng g−1 | 10 ng g−1 |
---|---|---|
NA | 102.3 ± 2.2 | 104.1 ± 3.3 |
ACL | 78.2 ± 4.1 | 72.8 ± 1.9 |
AC | 69.8 ± 1.2 | 63.3 ± 3.2 |
FL | 66.9 ± 5.0 | 68.5 ± 4.8 |
PHE | 88.3 ± 4.3 | 81.4 ± 1.7 |
AN | 95.2 ± 3.2 | 94.3 ± 2.8 |
FA | 88.1 ± 6.0 | 81.0 ± 5.8 |
PY | 99.3 ± 2.8 | 96.9 ± 2.4 |
BaA | 93.5 ± 2.9 | 102.9 ± 4.9 |
CHR | 90.8 ± 2.1 | 89.4 ± 1.7 |
BbFA | 92.8 ± 6.7 | 86.4 ± 3.8 |
BjFA | 94.3 ± 6.2 | 86.0 ± 3.7 |
BkFA | 93.6 ± 6.1 | 90.4 ± 3.1 |
BaP | 100.5 ± 7.8 | 79.2 ± 3.2 |
IP | 68.7 ± 2.9 | 65.0 ± 2.5 |
Compound | Calibration Curve Equation | r | LOD (µg kg−1 FW) | LOQ (µg kg−1 FW) | Intra-Day (RSD%) | Inter-Day (RSD%) |
---|---|---|---|---|---|---|
NA | y = 0.415x + 0.012 | 0.995 | 0.45 | 1.20 | 13.3 | 15.3 |
ACL | y = 0.510x + 0.022 | 0.995 | 0.50 | 1.25 | 4.1 | 6.3 |
AC | y = 0.622x + 0.013 | 0.997 | 0.40 | 1.10 | 2.2 | 4.5 |
FL | y = 0.530x + 0.002 | 0.998 | 0.35 | 0.95 | 4.0 | 8.0 |
PHE | y = 0.533x + 0.018 | 0.998 | 0.40 | 1.00 | 4.3 | 8.2 |
AN | y = 0.497x + 0.020 | 0.996 | 0.35 | 0.95 | 6.4 | 9.4 |
FA | y = 0.618x + 0.009 | 0.997 | 0.30 | 0.85 | 2.3 | 10.8 |
PY | y = 0.610x + 0.005 | 0.998 | 0.35 | 1.00 | 3.1 | 7.0 |
BaA | y = 0.589x + 0.003 | 0.998 | 0.50 | 1.30 | 2.1 | 5.2 |
CHR | y = 0.376x + 0.002 | 0.998 | 0.35 | 1.20 | 5.1 | 7.4 |
BbFA | y = 0.573x + 0.001 | 0.999 | 1.25 | 2.80 | 4.2 | 7.6 |
BjFA | y = 0.553x + 0.002 | 0.999 | 1.20 | 2.35 | 4.9 | 8.0 |
BkFA | y = 0.527x + 0.002 | 0.999 | 1.00 | 1.90 | 5.2 | 7.7 |
BaP | y = 0.537x + 0.001 | 0.998 | 0.50 | 1.00 | 5.5 | 7.3 |
IP | y = 0.540x + 0.012 | 0.998 | 0.55 | 1.25 | 6.1 | 7.0 |
Compounds | LODs (µg kg−1 FW) | LOQs (µg kg−1 FW) | References |
---|---|---|---|
NA, ACL, AC, FL, PHE, AN, FA, PY, BaA, CHR, BbFA, BjFA, BkFA, BaP, IP, Retene, Benzo[g,h,i]perylene, Cyclopenta[c,d]pyrene, Picene, Coronene, Benzo[e]pyrene, Dibenz[a,h]anthracene, 3-Methylcholanthrene | 0.2–0.7 | 0.8–2.8 | [30] |
NA, ACL, AC, FL, PHE, AN, FA, PY, BaA, CHR, BkFA, BaP, IP, Benzo[g,h,i]perylene, Dibenz[a,h]anthracene | 0.07–1.29 | N/A | [31] |
PHE, AN, FL, PY, BaA, CHR, BbFA, BjFA, BkFA, BaP, IP, Benzo[g,h,i]perylene, Dibenz[a,h]anthracene | N/A | 10 | [13] |
NA, ACL, AC, FL, PHE, AN, FA, PY, BaA, CHR, BkFA, BaP, IP, Benzo[g,h,i]perylene | 0.08–1.32 | N/A | [32] |
BbFA, BkFA, BjFA, BaP, IP, CHR, 5-methylchrysene, Benzo[g,h,i]perylene, Dibenz[a,h]anthracene, Dibenz[a,l]pyrene | 0.02–1.30 | 0.05–3.50 | [33] |
This study | 0.30–1.25 | 0.85–2.80 |
Compound | Rotello | Rome | Palermo | ||
---|---|---|---|---|---|
Rural (A) | Urban (B) | Background (C) | Urban (D) | Background (E) | |
NA | <0.45 | <0.45 | <0.45 | <0.45 | <0.45 |
ACL | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 |
AC | <0.40 | <0.40 | <0.40 | <0.40 | <0.40 |
FL | <0.35 | <0.35 | <0.35 | <0.35 | <0.35 |
PHE | <0.40 | 7.6 ± 0.1 | <0.40 | 3.4 ± 0.3 | 15.0 ± 0.3 |
AN | <0.35 | 2.5 ± 0.0 | <0.35 | 6.3 ± 0.5 | 8.0 ± 0.1 |
FA | <0.30 | 23.0 ± 0.9 | <0.30 | 19.9 ± 1.8 | 32.2 ± 1.2 |
PY | <0.35 | 18.1 ± 0.7 | <0.35 | 15.3 ± 1.0 | 20.4 ± 0.8 |
BaA | <0.50 | 3.8 ± 0.2 | <0.50 | 2.4 ± 0.1 | 4.9 ± 0.2 |
CHR | <0.35 | 2.3 ± 0.0 | <0.35 | 1.1 ± 0.0 | 2.0 ± 0.0 |
B[b+j+k]FA | <3.25 | 7.8 ± 0.9 | <3.25 | 8.9 ± 0.4 | 11.6 ± 0.8 |
BaP | <0.50 | 1.2 ± 0.1 | <0.50 | 1.0 ± 0.0 | 1.5 ± 0.0 |
IP | <0.55 | 3.9 ± 0.2 | <0.55 | 2.9 ± 0.3 | 4.4 ± 0.6 |
Total | - | 70.2 ± 3.1 | - | 61.2 ± 4.4 | 100.0 ± 4.0 |
Ratio formula | Range | Rome | Palermo | ||
---|---|---|---|---|---|
Urban (B) | Background (C) | Urban (D) | Background (E) | ||
AN/(AN + PHE) | >0.1 * | 0.24 | N/A | 0.65 | 0.35 |
BaA/(BaA + CHR) | 0.2–0.35 ** >0.35 *** <0.2 **** | 0.63 | N/A | 0.68 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ianiri, G.; Fratianni, A.; Avino, P.; Panfili, G. Determination of Polycyclic Aromatic Hydrocarbons from Atmospheric Deposition in Malva sylvestris Leaves Using Gas Chromatography with Mass Spectrometry (GC-MS). Atmosphere 2024, 15, 1402. https://doi.org/10.3390/atmos15121402
Ianiri G, Fratianni A, Avino P, Panfili G. Determination of Polycyclic Aromatic Hydrocarbons from Atmospheric Deposition in Malva sylvestris Leaves Using Gas Chromatography with Mass Spectrometry (GC-MS). Atmosphere. 2024; 15(12):1402. https://doi.org/10.3390/atmos15121402
Chicago/Turabian StyleIaniri, Giuseppe, Alessandra Fratianni, Pasquale Avino, and Gianfranco Panfili. 2024. "Determination of Polycyclic Aromatic Hydrocarbons from Atmospheric Deposition in Malva sylvestris Leaves Using Gas Chromatography with Mass Spectrometry (GC-MS)" Atmosphere 15, no. 12: 1402. https://doi.org/10.3390/atmos15121402
APA StyleIaniri, G., Fratianni, A., Avino, P., & Panfili, G. (2024). Determination of Polycyclic Aromatic Hydrocarbons from Atmospheric Deposition in Malva sylvestris Leaves Using Gas Chromatography with Mass Spectrometry (GC-MS). Atmosphere, 15(12), 1402. https://doi.org/10.3390/atmos15121402