High-Spatial Resolution Maps of PM2.5 Using Mobile Sensors on Buses: A Case Study of Teltow City, Germany, in the Suburb of Berlin, 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Modelling
2.3. Cross-Comparisons
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, C.A.; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Annesi-Maesano, I.; Forastiere, F.; Balmes, J.; Garcia, E.; Harkema, J.; Holgate, S.; Kelly, F.; Khreis, H.; Hoffmann, B.; Maesano, C.N.; et al. The clear and persistent impact of air pollution on chronic respiratory diseases: A call for interventions. Eur. Respir. J. 2021, 57, 2002981. [Google Scholar] [CrossRef] [PubMed]
- Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z.J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014, 383, 785–795. [Google Scholar] [CrossRef] [PubMed]
- de Prado Bert, P.; Mae Henderson Mercader, E.; Pujol, J.; Sunyer, J.; Mortamais, M. The effects of air pollution on the brain: A review of studies interfacing environmental epidemiology and neuroimaging. Curr. Environ. Health Rep. 2018, 5, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Shehab, M.A.; Pope, F.D. Effects of short-term exposure to particulate matter air pollution on cognitive performance. Sci. Rep. 2019, 9, 8237. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef]
- Renard, J.-B.; Surcin, J.; Annesi-Maesano, I.; Poincelet, R. Temporal evolution of PM2.5 levels and COVID-19 mortality in Europe for the 2020-2022 period. Atmosphere 2023, 14, 1222. [Google Scholar] [CrossRef]
- Couvidat, F.; Kim, Y.; Sartelet, K.; Seigneur, C.; Marchand, N.; Sciare, J. Modeling secondary organic aerosol in an urban area: Application to Paris, France. Atmos. Chem. Phys. 2013, 13, 983–996. [Google Scholar] [CrossRef]
- Petit, J.E.; Amodeo, T.; Meleux, F.; Bessagnet, B.; Menut, L.; Grenier, D.; Favez, O. Characterising an intense PM pollution episode in March 2015 in France from multi-site approach and near real time data: Climatology, variabilities, geographical origins and model evaluation. Atmos. Environ. 2017, 155, 68–84. [Google Scholar] [CrossRef]
- Lin, C.; Wang, Y.; Ooka, R.; Flageul, C.; Kim, Y.; Kikumoto, H.; Wang, Z.; Sartelet, K. Modeling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD. Atmos. Meas. Tech. 2023, 23, 1421–1436. [Google Scholar] [CrossRef]
- WHO Global Air Quality Guidelines. Particulate Matter (PM 2.5 and PM 10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Kessinger, S.; Minkos, A.; Dauert, U.; Feigenspan, S.; Hellack, B.; Moravek, A.; Richter, S.; Wichmann-Fiebig, M. Air Quality 2022, Preliminary Evaluation; German Environment Agency: Saxony-Anhalt, Germany, 2023. [Google Scholar]
- Allen, G.; Sioutas, C.; Koutrakis, P.; Reiss, R.; Lurmann, F.W.; Roberts, P.T. Evaluation of the TEOM method for measurements of ambient particulate mass in urban areas. J. Air Waste Manag. Assoc. 1997, 47, 682–689. [Google Scholar] [CrossRef]
- von Schneidemesser, E.; Bonn, B.; Butler, T.M.; Ehlers, C.; Gerwig, H.; Hakola, H.; Hellén, H.; Kerschbaumer, A.; Klemp, D.; Kofahl, C.; et al. BAERLIN2014—Stationary measurements and source apportionment at an urban background station in Berlin, Germany. Atmos. Chem. Phys. 2018, 18, 8621–8645. [Google Scholar] [CrossRef]
- Renard, J.-B.; Marchand, C. High Resolution Mapping of PM2.5 Concentrations in Paris (France) Using Mobile Pollutrack Sensors Network in 2020. Atmosphere 2021, 12, 529. [Google Scholar] [CrossRef]
- Renard, J.-B.; Poincelet, E.; Annesi-Maesano, I.; Surcin, J. High Spatial Distribution of PM2.5 mass and number concentrations in Paris (France) Mapping of PM2.5 Concentrations in Paris (France) from the Pollutrack Network of Mobile Sensors during 2018–2022. Snesors 2023, 23, 8560. [Google Scholar] [CrossRef]
- Beekmann, M.; Kerschbaumer, A.; Reimer, E.; Stern, R.; Möller, D. PM measurement campaign HOVERT in the Greater Berlin area: Model evaluation with chemically specified particulate matter observations for a one year period. Atmos. Chem. Phys. 2007, 7, 55–68. [Google Scholar] [CrossRef]
- Wallek, S.; Langner, M.; Schubert, S.; Schneider, C. Modelling Hourly Particulate Matter (PM10)Concentrations at High Spatial Resolution in Germany Using Land Use Regression and Open Data. Atmosphere 2022, 13, 1282. [Google Scholar] [CrossRef]
- Bessagnet, B.; Hodzic, A.; Vautard, R.; Beekmann, M.; Cheinet, S.; Honor’e, C.; Liousse, C.; Rouil, L. Aerosol modelling with CHIMERE—Preliminary evaluation at the continental scale. Atmos. Environ. 2004, 38, 2803–2817. [Google Scholar] [CrossRef]
- Kukkonen, J.; Kangas, L.; Kauhaniemi, M.; Sofiev, M.; Aarnio, M.; Jaakkola, J.J.K.; Kousa, A.; Karppinen, A. Modelling of the urban concentrations of PM2.5 on a high resolution for a period of 35~years, for the assessment of lifetime exposure and health effects. Atmos. Chem. Phys. 2018, 18, 8041–8064. [Google Scholar] [CrossRef]
- Klingner, M.; Sahn, E. Prediction of PM10 measurements concentrations on the basis of high resolution weather forecasting. Meteorol. Zeitsch. 2008, 17, 263–272. [Google Scholar] [CrossRef]
- Woltmann, L.; Deepe, J.; Hartmann, C.; Lehner, W. evalPM: A framework for evaluating machine learning models for particulate matter prediction. Environ Monit Assess. 2023, 195, 1491. [Google Scholar] [CrossRef]
- Van Poppel, M.; Int Panis, L.; Govarts, E.; van Houtte, J.; Maenhaut, W. A comparative study of traffic related air pollution next to a motorway flyover. Atmos. Environ. 2012, 60, 132–141. [Google Scholar] [CrossRef]
- McDuffie, E.E.; Martin, R.V.; Spadaro, J.V.; Burnett, R.; Smith, S.J.; O’Rourke, P.; Hammer, M.S.; van Donkelaar, A.; Bindle, L.; Shah, V.; et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 2021, 12, 3594. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.; Laxen, D.; Moorrot, S.; Laxen, K. Processes affecting concentrations of fine particulate matter in the UK atmosphere. Atmos. Environ. 2012, 46, 115–124. [Google Scholar] [CrossRef]
- Yin, J.; Harrison, R.; Chen, Q.; Rutter, A.; Schauer, J.J. Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmos. Environ. 2010, 44, 841–851. [Google Scholar] [CrossRef]
- Graham, A.; Pringle, K.; Arnold, S.; Pope, R.; Vieno, M.; Butt, E.; Conibear, L.; Stirling, E.; McQuaid, J. Impact of weather types on UK particulate matter concentrations. Atmos. Environ. 2020, 5, 100061. [Google Scholar] [CrossRef]
- Yang, J.; Zare Sakhvidi, M.J.; de Hoogh, K.; Vienneau, D.; Siemiatyck, J.; Zins, M.; Goldberg, M.; Chen, J.; Lequy, E.; Jacquemin, B. Long-term exposure to black carbon and mortality: A 28-year follow-up of the GAZEL cohort. Environ. Int. 2021, 157, 106805. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Liu, J.S.; Wang, Q.C.; Liang, Z.Z. Health risk assessment of heavy metal exposure to street dust in the zinc 586 smelting district, northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.H.; Kormoker, T.; Islam, M.S.; Khan, R.; Shammi, R.S.; Tusher, T.R.; Proshad, R.; Islam, M.S.; Idris, A.M. Potentially toxic elements in street dust from an urban city of a developing country: Ecological and probabilistic health risks assessment. Environ. Sci. Pollut. Res. 2021, 28, 57126–57148. [Google Scholar] [CrossRef] [PubMed]
- Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Jeannot, M.; Couté, B.; Akiki, R.; et al. LOAC, a light aerosols counter for ground-based and balloon measurements of the size distribution and of the main nature of atmospheric particles, 1. Principle of measurements and instrument evaluation. Atmos. Meas. Tech. 2016, 9, 1721–1742. [Google Scholar] [CrossRef]
- Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer. Atmos. Chem. Phys. 2015, 15, 2985–3005. [Google Scholar] [CrossRef]
Station | Latitude (° N) | Longitude (° E) | Position |
---|---|---|---|
UBA reference | 52.349703 | 13.424306 | |
Pollutrack 1 | 52.387226 | 13.302431 | House wall |
Pollutrack 2 | 52.385992 | 13.301668 | House wall |
Pollutrack 3 | 52.386310 | 13.301871 | Pole in a garden |
Pollutrack 4 | 52.390000 | 13.302722 | House wall |
Source of Values | Mean (µg.m−3) | Standard Deviation (µg.m−3) | FWHM (µg.m−3)) |
---|---|---|---|
Pollutrack—UBA reference | 0.7 | 2.3 | 2.2 |
Modelling—UBA reference | 1.7 | 3.7 | 6.5 |
Pollutrack—Modelling | −0.7 | 3.6 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renard, J.-B.; Becker, G.; Nodorft, M.; Tavakoli, E.; Thiele, L.; Poincelet, E.; Scholz, M.; Surcin, J. High-Spatial Resolution Maps of PM2.5 Using Mobile Sensors on Buses: A Case Study of Teltow City, Germany, in the Suburb of Berlin, 2023. Atmosphere 2024, 15, 1494. https://doi.org/10.3390/atmos15121494
Renard J-B, Becker G, Nodorft M, Tavakoli E, Thiele L, Poincelet E, Scholz M, Surcin J. High-Spatial Resolution Maps of PM2.5 Using Mobile Sensors on Buses: A Case Study of Teltow City, Germany, in the Suburb of Berlin, 2023. Atmosphere. 2024; 15(12):1494. https://doi.org/10.3390/atmos15121494
Chicago/Turabian StyleRenard, Jean-Baptiste, Günter Becker, Marc Nodorft, Ehsan Tavakoli, Leroy Thiele, Eric Poincelet, Markus Scholz, and Jérémy Surcin. 2024. "High-Spatial Resolution Maps of PM2.5 Using Mobile Sensors on Buses: A Case Study of Teltow City, Germany, in the Suburb of Berlin, 2023" Atmosphere 15, no. 12: 1494. https://doi.org/10.3390/atmos15121494
APA StyleRenard, J.-B., Becker, G., Nodorft, M., Tavakoli, E., Thiele, L., Poincelet, E., Scholz, M., & Surcin, J. (2024). High-Spatial Resolution Maps of PM2.5 Using Mobile Sensors on Buses: A Case Study of Teltow City, Germany, in the Suburb of Berlin, 2023. Atmosphere, 15(12), 1494. https://doi.org/10.3390/atmos15121494