Improvement of PM2.5 Forecast in China by Ground-Based Multi-Pollutant Emission Source Inversion in 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inventory Update
2.2. PM2.5 Forecast Evaluation
3. Results and Discussion
3.1. Analysis of Emission Inventory
3.2. PM2.5 Forecast Performance Analysis
4. Conclusions
- (1)
- After the inversion, adjustments were applied to the emission rates of various pollutants, with significant increases in CO, NOx, and OC emission rates and a notable decrease in SO2 emission rates. The NE and NW regions showed more pronounced adjustments in emission rates for various pollutants compared to other regions in China.
- (2)
- In comparison to the forecast results based on the priori emission inventory, the forecast accuracy of PM2.5 concentration for different lead times improved after applying the updated inventory, especially the accuracy of the 1–3 d forecasts, which increased by 2.5–4.2%. Meanwhile, the forecast accuracy during the heating season significantly improved compared to other months, with an average monthly increase of approximately 6.3% after the inventory inversion. The improvement in the accuracy of pollution day forecasts is beneficial for proposing more precise control measures. The overall forecast accuracy in the NE and NW regions showed particularly significant improvement on pollution days. The forecast performance for the pollution event from the NC region in early January 2022 was notably enhanced with the use of the inverted emission inventory, addressing the underestimation issues present in the priori inventory during this period.
- (3)
- While emission inventory inversion can improve the forecast accuracy to a certain extent, underestimation issues persisted, especially in the prediction of secondary particulate matter. Future improvements can be made by utilizing more observation data, such as particle components, to invert and enhance the emission source inventory for secondary particulate matter precursors. To further improve the forecast performance of pollutants, it is very necessary to improve the chemical reaction mechanism in this model, because the underestimation issue may be related to it.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Pang, C.; Zhu, J. IAP Progress in atmospheric environment modeling research. Chin. J. Atmos. Sci. 2008, 32, 987–995. [Google Scholar]
- Brasseur, G.P.; Jacob, D. Modeling of Atmospheric Chemistry; Cambridge University Press: Cambridge, UK, 2017; pp. 399–435. [Google Scholar]
- Hayami, H.; Sakurai, T.; Han, Z.; Ueda, H.; Carmichael, G.R.; Streets, D.; Holloway, T.; Wang, Z. MICS-Asia II: Model intercomparison and evaluation of particulate sulfate, nitrate and ammonium. Atmos. Environ. 2008, 42, 3510–3527. [Google Scholar] [CrossRef]
- Carmichael, G.; Sakurai, T.; Streets, D.; Hozumi, Y.; Ueda, H.; Park, S.; Fung, C.; Han, Z.; Kajino, M.; Engardt, M.; et al. MICS-Asia II: The model intercomparison study for Asia Phase II methodology and overview of findings. Atmos. Environ. 2008, 42, 3468–3490. [Google Scholar] [CrossRef]
- Hanna, S.R.; Chang, J.C.; Fernau, M.E. Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variables. Atmos. Environ. 1998, 32, 3619–3628. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Zhu, L.; Wang, Z. Comparison of anthropogenic emission inventories of China mainland. Res. Environ. Sci. 2013, 26, 703–711. [Google Scholar]
- Saikawa, E.; Kim, H.; Zhong, M.; Avramov, A.; Zhao, Y.; Janssens-Maenhout, G.; Kurokawa, I.; Klimont, Z.; Wagner, F.; Naik, V.; et al. Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China. Atmos. Chem. Phys. 2017, 17, 6393–6421. [Google Scholar]
- Zhang, L.; Zhao, T.; Gong, S.; Kong, S.; Tang, L.; Liu, D.; Wang, Y.; Jin, L.; Shan, Y.; Tan, C.; et al. Updated emission inventories of power plants in simulating air quality during haze periods over East China. Atmos. Chem. Phys. 2018, 18, 2065–2079. [Google Scholar] [CrossRef]
- Miyazaki, K.; Eskes, H.J.; Sudo, K.; Takigawa, M.; Van Weele, M.; Boersma, K.F. Simultaneous assimilation of satellite NO2, O3, CO, and HNO3 data for the analysis of tropospheric chemical composition and emissions. Atmos. Chem. Phys. 2012, 12, 9545–9579. [Google Scholar] [CrossRef]
- Peng, Z.; Lei, L.; Liu, Z.; Sun, J.; Ding, A.; Ban, J.; Chen, D.; Kou, X.; Chu, K. The impact of multi-species surface chemical observation assimilation on air quality forecasts in China. Atmos. Chem. Phys. 2018, 18, 17387–17404. [Google Scholar] [CrossRef]
- Feng, S.; Jiang, F.; Jiang, Z.; Wang, H.; Cai, Z.; Zhang, L. Impact of 3DVAR assimilation of surface PM 2.5 observations on PM 2.5 forecasts over China during wintertime. Atmos. Environ. 2018, 187, 34–49. [Google Scholar] [CrossRef]
- Wu, H.; Kong, L.; Tang, X.; Zhu, L.; Zhu, J.; Wang, Z. Air Quality Forecasting with Inversely Updated Emissions for China. Environ. Sci. Technol. Lett. 2023, 10, 655–661. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H.; et al. Anthropogenic emission inventories in China: A review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- MEICmodel. Available online: http://www.meicmodel.org/ (accessed on 1 November 2021).
- Li, M.; Zhang, Q.; Kurokawa, J.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.B.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.S.; Reddy, S.; Fu, J.S.; et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 2009, 9, 5131–5153. [Google Scholar] [CrossRef]
- Streets, D.G.; Bond, T.C.; Carmichael, G.R.; Fernandes, S.D.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.M.; Tsai, N.Y.; Wang, M.Q.; et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. Atmos. 2003, 108, 23. [Google Scholar] [CrossRef]
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Ocean. 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Wang, Z.; Maeda, T.; Hayashi, M.; Hsiao, L.F.; Liu, K.Y. A nested air quality prediction modeling system for urban and regional scales: Application for high-ozone episode in Taiwan. Water Air Soil Pollut. 2001, 130, 391–396. [Google Scholar] [CrossRef]
- Kong, L.; Tang, X.; Zhu, J.; Wang, Z.; Pan, Y.; Wu, H.; Wu, L.; Wu, Q.; He, Y.; Tian, S.; et al. Improved inversion of monthly ammonia emissions in China based on the Chinese ammonia monitoring network and ensemble Kalman filter. Environ. Sci. Technol. 2019, 53, 12529–12538. [Google Scholar] [CrossRef]
- Xiao, Q.; Ma, Z.; Li, S.; Liu, Y. The impact of winter heating on air pollution in China. PLoS ONE 2015, 10, e0117311. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Haque, M. Evidence on the Impact of Winter Heating Policy on Air Pollution and Its Dynamic Changes in North China. Sustainability 2019, 11, 2728. [Google Scholar] [CrossRef]
- Liang, B.; Li, X.; Ma, K.; Liang, S.-X. Pollution characteristics of metal pollutants in PM 2.5 and comparison of risk on human health in heating and non-heating seasons in Baoding, China. Ecotoxicol. Environ. Saf. 2019, 170, 166–171. [Google Scholar] [CrossRef]
- Wang, W.; Liu, M.; Wang, T.; Song, Y.; Zhou, L.; Cao, J.; Hu, J.; Tang, G.; Chen, Z.; Li, Z.; et al. Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events. Nat. Commun. 2021, 12, 1993. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Ma, C.; Wang, T.; Qu, Y.; Li, M.; Li, S.; Zhuang, B.; Xie, M. Study on the assimilation of the sulphate reaction rates based on WRF-Chem/DART. Sci. China Earth Sci. 2023, 66, 2239–2253. [Google Scholar] [CrossRef]
Emission | Type | China | NE | NC | SE | NW | SW |
---|---|---|---|---|---|---|---|
PM2.5 | Priori | 6.7 | 6.5 | 21.7 | 13.8 | 1.3 | 3.8 |
Inversion | 6.6 | 6.9 | 14.3 | 10.9 | 4.3 | 3.7 | |
CO | Priori | 297.3 | 339.4 | 641.8 | 632.9 | 77.1 | 221.4 |
Inversion | 702.4 | 689.5 | 1153.8 | 1442.2 | 388.6 | 482.0 | |
NOx | Priori | 25.0 | 22.1 | 71.0 | 58.7 | 6.3 | 10.5 |
Inversion | 37.2 | 30.0 | 82.9 | 70.9 | 19.8 | 23.0 | |
SO2 | Priori | 16.3 | 16.1 | 34.8 | 30.6 | 5.6 | 14.1 |
Inversion | 13.4 | 16.7 | 26.9 | 23.8 | 6.9 | 8.2 | |
NMVOCs | Priori | 45.6 | 35.9 | 109.5 | 124.6 | 7.9 | 23.2 |
Inversion | 40.3 | 39.2 | 106.3 | 92.0 | 11.7 | 17.0 | |
BC | Priori | 2.8 | 3.0 | 5.6 | 6.3 | 0.6 | 2.4 |
Inversion | 3.0 | 4.0 | 6.1 | 6.0 | 1.5 | 1.9 | |
OC | Priori | 5.6 | 6.0 | 9.0 | 13.0 | 1.4 | 5.2 |
Inversion | 10.5 | 15.4 | 15.6 | 13.6 | 7.2 | 6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Tang, X.; Yang, W.; Zhao, Y.; Kong, L.; Wu, H.; Fan, M.; Yu, C.; Chen, L. Improvement of PM2.5 Forecast in China by Ground-Based Multi-Pollutant Emission Source Inversion in 2022. Atmosphere 2024, 15, 181. https://doi.org/10.3390/atmos15020181
Zhu L, Tang X, Yang W, Zhao Y, Kong L, Wu H, Fan M, Yu C, Chen L. Improvement of PM2.5 Forecast in China by Ground-Based Multi-Pollutant Emission Source Inversion in 2022. Atmosphere. 2024; 15(2):181. https://doi.org/10.3390/atmos15020181
Chicago/Turabian StyleZhu, Lili, Xiao Tang, Wenyi Yang, Yao Zhao, Lei Kong, Huangjian Wu, Meng Fan, Chao Yu, and Liangfu Chen. 2024. "Improvement of PM2.5 Forecast in China by Ground-Based Multi-Pollutant Emission Source Inversion in 2022" Atmosphere 15, no. 2: 181. https://doi.org/10.3390/atmos15020181
APA StyleZhu, L., Tang, X., Yang, W., Zhao, Y., Kong, L., Wu, H., Fan, M., Yu, C., & Chen, L. (2024). Improvement of PM2.5 Forecast in China by Ground-Based Multi-Pollutant Emission Source Inversion in 2022. Atmosphere, 15(2), 181. https://doi.org/10.3390/atmos15020181