Analysis of Experimental Measurements of Particulate Matter (PM) and Lung Deposition Surface Area (LDSA) in Operational Faces of an Oil Shale Underground Mine
Abstract
:1. Introduction
1.1. Air Quality in Underground Mines
1.2. Lung Deposited Surface Area
1.3. Oil Shale Particulates
2. Materials and Methods
2.1. Study Mine Site
2.2. Measuring Instruments
2.3. Data Analysis Tools
3. Results
3.1. Measurements Results
3.2. Filter Analysis by SEM/EDS (Jeol JSM-IT200)
3.3. Data Analysis
3.4. Particle Diameter Analysis
4. Discussion
4.1. Compliance of the Results Obtained with the Research Hypothesis
4.2. Limitations of this Study and Generalization of Its Results
4.3. Proposals for Practical Application
4.4. Suggestions for Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Appendix A
Parameters | PM1 (µg/m3) | PM2.5 (µg/m3) | PM4 (µg/m3) | PM10 (µg/m3) | PMTotal (µg/m3) |
---|---|---|---|---|---|
Mean | 47.87037037 | 49.55555556 | 50.6712963 | 53.49537037 | 57.46296296 |
Standard Error | 0.247048485 | 0.807311194 | 0.804804453 | 0.874241339 | 1.414774566 |
Median | 47 | 48 | 49 | 51 | 51 |
Mode | 46 | 47 | 48 | 48 | 48 |
Standard Deviation | 3.630856373 | 11.86500293 | 11.82816151 | 12.84867116 | 20.79285473 |
Sample Variance | 13.183118 | 140.7782946 | 139.9054048 | 165.0883506 | 432.3428079 |
Kurtosis | 16.29490939 | 86.19188119 | 85.53860599 | 65.30047 | 17.3808661 |
Skewness | 3.624468179 | 8.972057792 | 8.913545965 | 7.394231536 | 3.954185538 |
Range | 28 | 124 | 125 | 128 | 140 |
Minimum | 44 | 45 | 45 | 45 | 45 |
Maximum | 72 | 169 | 170 | 173 | 185 |
Sum | 10,340 | 10,704 | 10,945 | 11,555 | 12,412 |
Count | 216 | 216 | 216 | 216 | 216 |
Largest (1) | 72 | 169 | 170 | 173 | 185 |
Smallest (1) | 44 | 45 | 45 | 45 | 45 |
Parameters | Surface (µm2/cm3) | Mass Conc (µg/m3) Partector | Number (cm−3) | Diam (nm) | LDSA (µm2/cm3) |
---|---|---|---|---|---|
Mean | 1027.958394 | 37.97261468 | 34,358.1789 | 65.30733945 | 124.9018349 |
Standard Error | 7.067047895 | 0.471652806 | 413.2387466 | 0.494428611 | 0.300598315 |
Median | 1053.405 | 39.735 | 32,711.5 | 67 | 124.8 |
Mode | 940.91 | 39.38 | 34952 | 68 | 122.4 |
Standard Deviation | 104.3437117 | 6.963870226 | 6101.396975 | 7.300150954 | 4.438280932 |
Sample Variance | 10,887.61018 | 48.49548852 | 37,227045.04 | 53.29220395 | 19.69833763 |
Kurtosis | 7.337848144 | 3.869262447 | 10.53556875 | 5.228288191 | −0.26471414 |
Skewness | −2.39287987 | −1.74771923 | 2.84285011 | −1.99967841 | 0.132200729 |
Range | 689.36 | 41.68 | 42640 | 45 | 24.2 |
Minimum | 501.41 | 8.95 | 26,169 | 32 | 112 |
Maximum | 1190.77 | 50.63 | 68,809 | 77 | 136.2 |
Sum | 22,4094.93 | 8278.03 | 74,90083 | 14,237 | 27,228.6 |
Count | 218 | 218 | 218 | 218 | 218 |
Largest (1) | 1190.77 | 50.63 | 68,809 | 77 | 136.2 |
Smallest (1) | 501.41 | 8.95 | 26,169 | 32 | 112 |
Parameters | PM1 (µg/m3) | PM2.5 (µg/m3) | PM4 (µg/m3) | PM10 (µg/m3) | PMTotal (µg/m3) |
---|---|---|---|---|---|
Mean | 189.6207865 | 194.7949438 | 199.6404494 | 212.9747191 | 230.0786517 |
Standard Error | 4.376927203 | 4.890848499 | 5.041630753 | 5.179123165 | 5.614386065 |
Median | 147 | 149 | 153.5 | 173.5 | 200.5 |
Mode | 123 | 139 | 142 | 135 | 147 |
Standard Deviation | 82.5836973 | 92.28034492 | 95.1252988 | 97.71950045 | 105.9320244 |
Sample Variance | 6820.06706 | 8515.662059 | 9048.822472 | 9549.100768 | 11,221.5938 |
Kurtosis | 3.602227618 | 7.362166316 | 8.211720232 | 7.601760926 | 6.375944446 |
Skewness | 1.572135606 | 2.146332241 | 2.233159553 | 2.130041314 | 1.943837711 |
Range | 539 | 601 | 654 | 659 | 671 |
Minimum | 95 | 111 | 112 | 112 | 112 |
Maximum | 634 | 712 | 766 | 771 | 783 |
Sum | 67,505 | 69,347 | 71,072 | 75,819 | 81,908 |
Count | 356 | 356 | 356 | 356 | 356 |
Largest (1) | 634 | 712 | 766 | 771 | 783 |
Smallest (1) | 95 | 111 | 112 | 112 | 112 |
Parameters | Surface (µm2/cm3) | Mass Conc (µg/m3) Partector | Number (cm−3) | Diam (nm) | LDSA (µm2/cm3) |
---|---|---|---|---|---|
Mean | 3246.366152 | 88.81632022 | 24,7692.441 | 59.13202247 | 554.3589888 |
Standard Error | 152.9225395 | 3.23684406 | 18011.33689 | 0.842704159 | 32.60363849 |
Median | 1512.565 | 59.995 | 48,678.5 | 65 | 173.95 |
Mode | 891.84 | 20.56 | 43,907 | 65 | 159.6 |
Standard Deviation | 2885.336705 | 61.07265158 | 33,9837.2248 | 15.90011028 | 615.1642207 |
Sample Variance | 83,25167.903 | 3729.868771 | 1.15489 × 1011 | 252.8135069 | 37,8427.0184 |
Kurtosis | −0.309972503 | 4.734085282 | 0.766723128 | 1.734794534 | −0.369654767 |
Skewness | 1.118705513 | 1.837598528 | 1.430383847 | 0.05830985 | 1.14080232 |
Range | 13,432.3 | 459.94 | 13,40591 | 122 | 2109.2 |
Minimum | 14,176.08 | 475.41 | 22,570 | 28 | 141.5 |
Maximum | 11,55706.35 | 31,618.61 | 13,63161 | 150 | 2250.7 |
Sum | 356 | 356 | 88,178509 | 21,051 | 19,7351.8 |
Count | 14,176.08 | 475.41 | 356 | 356 | 356 |
Largest (1) | 743.78 | 15.47 | 13,63161 | 150 | 2250.7 |
Smallest (1) | 3246.366152 | 88.81632022 | 22570 | 28 | 141.5 |
Parameters | PM1 (µg/m3) | PM2.5 (µg/m3) | PM4 (µg/m3) | PM10 (µg/m3) | PMTotal (µg/m3) |
---|---|---|---|---|---|
Mean | 3823.056604 | 4060.386792 | 4895.509434 | 10040.71698 | 20846.24764 |
Standard Error | 191.9699323 | 200.8198256 | 238.8996956 | 500.8734728 | 1003.648002 |
Median | 2625 | 2815 | 3365 | 6665 | 14,700 |
Mode | 1010 | 10,800 | 2900 | 13,200 | 11,700 |
Standard Deviation | 3952.902843 | 4135.133298 | 4919.245813 | 10,313.61605 | 20,666.37723 |
Sample Variance | 15,625440.89 | 17,099327.39 | 24,198979.37 | 10,6370675.9 | 42,7099147.9 |
Kurtosis | 2.859176823 | 2.525048827 | 1.946113732 | 1.672160248 | 1.133770927 |
Skewness | 1.590561813 | 1.521951329 | 1.416397452 | 1.395508947 | 1.249761376 |
Range | 22,376 | 22,971 | 25,962 | 50,918 | 10,0637 |
Minimum | 124 | 129 | 138 | 182 | 363 |
Maximum | 22,500 | 23,100 | 26,100 | 51,100 | 10,1000 |
Sum | 16,20976 | 17,21604 | 20,75696 | 42,57264 | 88,38809 |
Count | 424 | 424 | 424 | 424 | 424 |
Largest (1) | 22,500 | 23,100 | 26,100 | 51,100 | 10,1000 |
Smallest (1) | 124 | 129 | 138 | 182 | 363 |
Parameters | Surface (µm2/cm3) | Mass Conc (µg/m3) Partector | Number (cm−3) | Diam (nm) | LDSA (µm2/cm3) |
---|---|---|---|---|---|
Mean | 2425.998561 | 69.57408019 | 13,9306.1132 | 53.70990566 | 372.1228774 |
Standard Error | 72.40912873 | 1.978301661 | 5669.539688 | 0.613683596 | 12.11371387 |
Median | 1895.295 | 56.345 | 98,647.5 | 52 | 289.95 |
Mode | #N/A | 55.72 | 59,561 | 46 | 179.1 |
Standard Deviation | 1490.995216 | 40.73572442 | 11,6742.9674 | 12.63651866 | 249.4366353 |
Sample Variance | 22,23066.735 | 1659.399244 | 13,628920438 | 159.6816038 | 62,218.63505 |
Kurtosis | 10.60323329 | 14.543729 | 13.23882142 | 20.30537456 | 7.931571367 |
Skewness | 2.806557221 | 3.227610723 | 2.811189211 | 3.078381782 | 2.383864586 |
Range | 10,709.14 | 343.49 | 99,9913 | 120 | 1687.3 |
Minimum | 1036 | 25 | 24,918 | 30 | 160.7 |
Maximum | 11,745.4 | 368.53 | 10,24831 | 150 | 1848 |
Sum | 10,28623.39 | 29,499.41 | 59,065792 | 22,773 | 15,7780.1 |
Count | 424 | 424 | 424 | 424 | 424 |
Largest (1) | 11,745.4 | 368.53 | 10,24831 | 150 | 1848 |
Smallest (1) | 1036.26 | 25.04 | 24,918 | 30 | 160.7 |
References
- McDonald, J.D.; Zielinska, B.; Sagebiel, J.C.; McDaniel, M.R.; Mousset-Jones, P. Source apportionment of airborne fine particulate matter in an underground mine. J. Air Waste Manag. Assoc. 2003, 53, 386–395. [Google Scholar] [CrossRef]
- Ghose, M.K. Generation and quantification of hazardous dusts from coal mining in the indian context. Environ. Monit. Assess. 2007, 130, 35–45. [Google Scholar] [CrossRef]
- Saarikoski, S.; Teinilä, K.; Timonen, H.; Aurela, M.; Laaksovirta, T.; Reyes, F.; Hillamo, R. Particulate matter characteristics, dynamics, and sources in an underground mine. Aerosol Sci. Technol. 2018, 52, 114–122. [Google Scholar] [CrossRef]
- Timonen, H.; Teinilä, K.; Aurela, M.; Reyes, F.; Vásquez, Y.; Bloss, M.; Oyola, P.; Hillamo, R.; Asmi, E.; Saarikoski, S. Sources and composition of particulate matter in boreal arctic environment next to an active mining area. Boreal Environ. Res. 2018, 23, 105–125. [Google Scholar]
- McDonald, J.D.; Zielinska, B.; Sagebiel, J.C.; McDaniel, M.R. Characterization of fine particle material in ambient air and personal samples from an underground mine. Aerosol Sci. Technol. 2002, 36, 1033–1044. [Google Scholar] [CrossRef]
- Straif, K.; Benbrahim-Tallaa, L.; Baan, R.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens-Part C: Metals, arsenic, dusts, and fibres. Lancet Oncol. 2009, 10, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.C.; Yu IT, S.; Chen, W. Silicosis. Lancet 2012, 379, 2008–2018. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, X.; Peng, G.; Han, M.; Guo, Q.; Hou, J.; Gao, B. Research on the Evaluation of Air Quality in Underground Coal Mines Based on a Generalized Contrastive Weighted Comprehensive Scale Index Method. Atmosphere 2023, 14, 1021. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, Y. Study of comprehensive evaluation on air quality in mine based on matter element model. Miner. Resour. Dev. 2015, 35, 61–63. (In Chinese) [Google Scholar]
- Patra, A.K.; Gautam, S.; Kumar, P. Emissions and human health impact of particulate matter from surface mining operation—A review. Environ. Technol. Innov. 2016, 5, 233–249. [Google Scholar] [CrossRef]
- Saarikoski, S.; Salo, L.; Bloss, M.; Alanen, J.; Teinilä, K.; Reyes, F.; Timonen, H. Sources and characteristics of particulate matter at five locations in an underground mine. Aerosol Air Qual. Res. 2019, 19, 2613–2624. [Google Scholar] [CrossRef]
- Roy, D.; Singh, G.; Gosai, N. Identification of possible sources of atmospheric PM 10 using particle size, SEM-EDS and XRD analysis, Jharia Coalfield Dhanbad, India. Environ. Monit. Assess. 2015, 187, 680. [Google Scholar] [CrossRef]
- Puławska, A.; Manecki, M.; Flasza, M.; Styszko, K. Origin, distribution, and perspective health benefits of particulate matter in the air of underground salt mine: A case study from Bochnia, Poland. Environ. Geochem. Health 2021, 43, 3533–3556. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, S.A.; Oliveira, M.L.; Nyakuma, B.B.; Dotto, G.L. Geochemical and morphological evaluations of organic and mineral aerosols in coal mining areas: A case study of Santa Catarina, Brazil. Sustainability 2022, 14, 3847. [Google Scholar] [CrossRef]
- Diesel Particulate Matter Exposure of Underground Coal Miners. (2001, January 19). Federal Register. Available online: https://www.federalregister.gov/documents/2001/01/19/01-995/diesel-particulate-matter-exposure-of-underground-coal-miners (accessed on 17 December 2023).
- Afshar-Mohajer, N.; Foos, R.; Volckens, J.; Ramachandran, G. Variability of aerosol mass and number concentrations during taconite mining operations. J. Occup. Environ. Hyg. 2020, 17, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, H.M.; Park, M.V.; Gosens, I.; De Jong, W.H.; Cassee, F.R. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol. 2014, 11, 18. [Google Scholar] [CrossRef]
- Kuula, J.; Kuuluvainen, H.; Niemi, J.V.; Saukko, E.; Portin, H.; Kousa, A.; Aurela, M.; Rönkkö, T.; Timonen, H. Long-term sensor measurements of lung deposited surface area of particulate matter emitted from local vehicular and residential wood combustion sources. Aerosol Sci. Technol. 2020, 54, 190–202. [Google Scholar] [CrossRef]
- Kuuluvainen, H.; Rönkkö, T.; Järvinen, A.; Saari, S.; Karjalainen, P.; Lähde, T.; Pirjola, L.; Niemi, J.V.; Hillamo, R.; Keskinen, J. Lung deposited surface area size distributions of particulate matter in different urban areas. Atmos. Environ. 2016, 136, 105–113. [Google Scholar] [CrossRef]
- Huynh, T.; Ramachandran, G.; Quick, H.; Hwang, J.; Raynor, P.C.; Alexander, B.H.; Mandel, J.H. Ambient fine aerosol concentrations in multiple metrics in taconite mining operations. Ann. Work. Expo. Health 2018, 63, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.T.M.; Ngoh, J.R.; Balasubramanian, R. Assessment of the integrated personal exposure to particulate emissions in urban micro-environments: A pilot study. Aerosol Air Qual. Res. 2020, 20, 341–357. [Google Scholar] [CrossRef]
- Salo, L.; Rönkkö, T.; Saarikoski, S.; Teinilä, K.; Kuula, J.; Alanen, J.; Keskinen, J. Concentrations and size distributions of particle lung-deposited surface area (LDSA) in an underground mine. Aerosol Air Qual. Res. 2021, 21, 200660. [Google Scholar] [CrossRef]
- Jafarigol, F.; Sabanov, S.; Magauiya, N.; Dauitbay, Z.; Qureshi, A.R.; Adotey, E.; Salmanimojaveri, M.; Torkmahalleh, M.A. Particle number, mass, and surface area concentrations inside an underground metalliferous mine in Kazakhstan. Atmos. Pollut. Res. 2023, 14, 101871. [Google Scholar] [CrossRef]
- Delfino, R.J.; Sioutas, C.; Malik, S. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ. Health Perspect. 2005, 113, 934–946. [Google Scholar] [CrossRef]
- Schiavo, B.; Morton-Bermea, O.; Meza-Figueroa, D.; Acosta-Elías, M.; González-Grijalva, B.; Armienta-Hernández, M.A.; Claudio Inguaggiato, C.; Valera-Fernández, D. Characterization and Polydispersity of Volcanic Ash Nanoparticles in Synthetic Lung Fluid. Toxics 2023, 11, 624. [Google Scholar] [CrossRef]
- Kalaiarasan, G.; Kumar, P.; Tomson, M.; Zavala-Reyes, J.C.; Porter, A.E.; Young, G.; Sephton, M.A.; Abubakar-Waziri, H.; Pain, C.C.; Adcock, I.M.; et al. Particle Number Size Distribution in Three Different Microenvironments of London. Atmosphere 2024, 15, 45. [Google Scholar] [CrossRef]
- Wang, J.; Meng, X.; Ma, X.; Xiao, Q.; Liu, B.; Zhang, G. Experimental study on whether and how particle size affects the flame propagation and explosibility of oil shale dust. Process Saf. Prog. 2019, 38, e12075. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Ren, T.; Wu, J.; Lin, H.; Shuang, H. Respirable dust pollution characteristics within an underground heading face driven with continuous miner–A CFD modelling approach. J. Clean. Prod. 2019, 217, 267–283. [Google Scholar] [CrossRef]
- Lepistö, T.; Kuuluvainen, H.; Lintusaari, H.; Kuittinen, N.; Salo, L.; Helin, A.; Niemi, J.V.; Manninen, H.E.; Timonen, H.; Jalava, P.; et al. Connection between lung deposited surface area (LDSA) and black carbon (BC) concentrations in road traffic and harbour environments. Atmos. Environ. 2022, 272, 118931. [Google Scholar] [CrossRef]
- Salo, L. Characterization and Development of Electrical Methods for Aerosol Measurement. 2023. Available online: http://urn.fi/URN:ISBN:978-952-03-2930-3 (accessed on 16 June 2023).
- Gratt, L.B. Risk analysis of hazardous materials in oil shale. J. Hazard. Mater. 1985, 10, 317–350. [Google Scholar] [CrossRef]
- Liu, T.; Liu, S. The impacts of coal dust on miners’ health: A review. Environ. Res. 2020, 190, 109849. [Google Scholar] [CrossRef]
- Chang, P.; Xu, G. A review of the health effects and exposure-responsible relationship of diesel particulate matter for underground mines. Int. J. Min. Sci. Technol. 2017, 27, 831–838. [Google Scholar] [CrossRef]
- Widodo, N.P.; Putra, S.H.; Ihsan, A.; Gautama, R.S.; Cheng, J.; Waly, F.Z.; Permadi, D.A. The study of coal dust minimum explosion concentration of subbituminous coal. Process Saf. Environ. Prot. 2023, 177, 1387–1392. [Google Scholar] [CrossRef]
- Jin, H.; Li, S.; Yu, H.; Yuan, L.; Zhou, F.; Tan, Z. Filtration of dust particles in underground coal mines. Powder Technol. 2023, 423, 118506. [Google Scholar] [CrossRef]
- Dyni, J.R. Geology and Resources of Some World Oil-Shale Deposits. Scientific Investigations Report 2005–5294, USGS. 2003. Available online: https://pubs.usgs.gov/sir/2005/5294/ (accessed on 1 June 2006).
- Sabanov, S.; Qureshi, A.R.; Dauitbay, Z.; Kurmangazy, G. A Method for the Modified Estimation of Oil Shale Mineable Reserves for Shale Oil Projects: A Case Study. Energies 2023, 16, 5853. [Google Scholar] [CrossRef]
- Meng, X.; Liu, Y.; Wang, J.; Wang, Z.; Yan, K. Experimental study and kinetic analysis on the deflagration characteristics of oil shale dust. Process Saf. Environ. Prot. 2022, 159, 830–841. [Google Scholar] [CrossRef]
- Yu, L.; Li, G.; Liu, W.; Yu, J.; Yuan, C. Experimental investigations on ignition sensitivity of hybrid mixtures of oil shale dust and syngas. Fuel 2017, 210, 1–7. [Google Scholar] [CrossRef]
- Teinemaa, E.; Kirso, U.; Strommen, M.; Kamens, R. Atmospheric behaviour of oil-shale combustion fly ash in a chamber study. Atmos. Environ. 2002, 36, 813–824. [Google Scholar] [CrossRef]
- Sillanpää, S.; Fung, P.L.; Niemi, J.V.; Kousa, A.; Kangas, L.; Zaidan, M.A.; Timonen, H.; Petäjä, T.; Kulmala, M.; Hussein, T. Long-term air quality trends of regulated pollutants in Helsinki metropolitan area in 1994–2019 and implications to air quality index. Boreal Environ. Res. 2022, 27, 61–79. Available online: http://hdl.handle.net/10138/343590 (accessed on 17 December 2023).
- Luoma, K.; Niemi, J.V.; Aurela, M.; Fung, P.L.; Helin, A.; Hussein, T.; Kangas, L.; Kousa, A.; Rönkkö, T.; Timonen, H.; et al. Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland. Atmos. Chem. Phys. 2021, 21, 1173–1189. [Google Scholar] [CrossRef]
- Sabanov, S.; Nikitin, O.; Qureshi, A.; Dauitbay, Z. A case study to improve blasting efficiency by the use of emulsion explosives. Oil Shale 2023, 40, 244–259. [Google Scholar] [CrossRef]
- Sabanov, S. Analysis of field test work results for the oil shale mine ventilation simulation. Oil Shale 2018, 35, 356–364. [Google Scholar] [CrossRef]
- Todea, A.M.; Beckmann, S.; Kaminski, H.; Asbach, C. Accuracy of electrical aerosol sensors measuring lung deposited surface area concentrations. J. Aerosol Sci. 2015, 89, 96–109. [Google Scholar] [CrossRef]
- Fierz, M.; Meier, D.; Steigmeier, P.; Burtscher, H. Aerosol measurement by induced currents. Aerosol Sci. Technol. 2014, 48, 350–357. [Google Scholar] [CrossRef]
- Kappelt, N.; Russell, H.S.; Fessa, D.; Van Ryswyk, K.; Hertel, O.; Johnson, M.S. Particulate air pollution in the Copenhagen metro part 1: Mass concentrations and ventilation. Environ. Int. 2023, 171, 107621. [Google Scholar] [CrossRef] [PubMed]
- Balasurya, S.; Syed, A.; Thomas, A.M.; Marraiki, N.; Elgorban, A.M.; Raju, L.L.; Das, A.; Khan, S.S. Rapid colorimetric detection of mercury using silver nanoparticles in the presence of methionine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117712. [Google Scholar] [CrossRef] [PubMed]
- Fatima, S.; Mishra, S.K.; Kumar, U.; Ahlawat, A.; Dabodiya, T.S.; Khosla, D. Role of morphology and chemical composition of PM for particle deposition in human respiratory system: A case study over megacity-Delhi. Urban Clim. 2023, 47, 101344. [Google Scholar] [CrossRef]
- Duan, M.; Wang, Y.; Ren, X.; Qu, X.; Cao, Y.; Yang, Y.; Nian, L. Correlation analysis of three influencing factors and the dust production rate for a free-falling particle stream. Particuology 2017, 34, 126–133. [Google Scholar] [CrossRef]
- Jose, J.; Patel, J.N.; Patnaik, S. Application of regression analysis in K-SVD dictionary learning. Optik 2015, 126, 2295–2299. [Google Scholar] [CrossRef]
- Galoie, M.; Motamedi, A.; Fan, J.; Moudi, M. Prediction of water quality under the impacts of fine dust and sand storm events using an experimental model and multivariate regression analysis. Environ. Pollut. 2023, 336, 122462. [Google Scholar] [CrossRef]
- Clark, C.E. The PERT model for the distribution of an activity. Oper. Res. 1962, 10, 405–406. [Google Scholar] [CrossRef]
- Lambrigger, D.D.; Shevchenko, P.V.; Wüthrich, M.V. The quantification of operational risk using internal data, relevant external data and expert opinion. J. Oper. Risk 2007, 2, 3–27. [Google Scholar] [CrossRef]
- Karwanski, M.; Grzybowska, U. Modeling Correlations in Operational Risk. Acta Physica Polonica A 2018, 133, 1402–1407. [Google Scholar] [CrossRef]
- Fung, P.L.; Sillanpää, S.; Niemi, J.V.; Kousa, A.; Timonend, H.; Zaidan, M.A.; Saukko, E.; Kulmala, M.; Petäjä, T.; Hussein, T. Improving the current air quality index with new particulate indicators using a robust statistical approach. Sci. Total Environ. 2022, 844, 157099. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Nagendra, S.S. Chemical and morphological characterization of respirable suspended particulate matter (PM10) and associated heath risk at a critically polluted industrial cluster. Atmos. Pollut. Res. 2018, 9, 791–803. [Google Scholar] [CrossRef]
- Sarver, E.; Keles, C.; Rezaee, M. Beyond conventional metrics: Comprehensive characterization of respirable coal mine dust. Int. J. Coal Geol. 2019, 207, 84–95. [Google Scholar] [CrossRef]
- Trecheraa, P.; Morenoa, T.; Córdobaa, P.; Morenoa, N.; Zhuangc, X.; Lic, B.; Lic, J.; Shangguanc, Y.; Kandlerd, K.; Domingueze, A.O.; et al. Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. J. Hazard. Mater. 2020, 399, 122935. [Google Scholar] [CrossRef]
- Schriefl, M.A.; Nishida, R.T.; Knoll, M.; Boies, A.M. Characterization of particle number counters based on pulsed-mode diffusion charging. Aerosol Sci. Technol. 2020, 54, 772–789. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Nguyen, D.; Brindley, S.; Ma, T.; Xia, T.; Brune, J.; Brown, J.M.; Tsai, C.S.-J. The dependence of particle size on cell toxicity for modern mining dust. Sci. Rep. 2023, 13, 5101. [Google Scholar] [CrossRef]
- Li, Z.; Che, W.; Lau, A.K.H.; Fung, J.C.H.; Lin, C.; Lu, X. A feasible experimental framework for field calibration of portable light-scattering aerosol monitors: Case of TSI DustTrak. Environ. Pollut. 2019, 255, 113136. [Google Scholar] [CrossRef]
- Javed, W.; Guo, B. Performance Evaluation of Real-time DustTrak Monitors for Outdoor Particulate Mass Measurements in a Desert Environment. Aerosol Phys. Instrum. 2021, 21, 200631. [Google Scholar] [CrossRef]
Name | Value | Zone 1 | Zone 2 | Zone 3 |
---|---|---|---|---|
LDSA (µm2/cm3) | min | 112 | 142 | 161 |
mean | 125 | 554 | 372 | |
max | 136 | 2251 | 1848 | |
STDV | 0.3 | 32.603 | 12.113 | |
Surface area (µm2/cm3) | min | 501 | 744 | 1036 |
mean | 1028 | 3246 | 2426 | |
max | 1191 | 14,176 | 11,745 | |
STDV | 7.06 | 152.922 | 72.409 | |
PNC (pt/cm3) | min | 26,169 | 22,570 | 24,918 |
mean | 34,355 | 247,673 | 139,306 | |
max | 68,809 | 963,161 | 924,831 | |
STDV | 413 | 18,011 | 5669 | |
Diameter (nm) | min | 32 | 28 | 30 |
mean | 65 | 59 | 54 | |
max | 77 | 150 | 150 | |
STDV | 0.494 | 0.842 | 0.613 | |
PM0.3 (µg/m3) | min | 9 | 15 | 25 |
mean | 38 | 89 | 70 | |
max | 51 | 475 | 369 | |
STDV | 0.471 | 3.236 | 1.978 |
Name | Value | Zone 1 | Zone 2 | Zone 3 |
---|---|---|---|---|
PM1 (µg/m3) | min | 44 | 95 | 124 |
mean | 48 | 190 | 3823 | |
max | 72 | 634 | 22,500 | |
STDV | 0.247 | 4.376 | 192 | |
PM2.5 (µg/m3) | min | 45 | 111 | 129 |
mean | 50 | 195 | 4060 | |
max | 169 | 712 | 23,100 | |
STDV | 0.807 | 4.890 | 201 | |
PM4 (µg/m3) | min | 45 | 112 | 138 |
mean | 51 | 200 | 4896 | |
max | 170 | 766 | 26,100 | |
STDV | 0.804 | 5.041 | 239 | |
PM10 (µg/m3) | min | 45 | 112 | 182 |
mean | 54 | 213 | 10,041 | |
max | 173 | 771 | 51,100 | |
STDV | 0.874 | 5.179 | 501 | |
PMtotal (µg/m3) | min | 45 | 112 | 363 |
mean | 57 | 230 | 20,846 | |
max | 185 | 783 | 101,000 | |
STDV | 1.414 | 5.614 | 1004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabanov, S.; Qureshi, A.R.; Korshunova, R.; Kurmangazy, G. Analysis of Experimental Measurements of Particulate Matter (PM) and Lung Deposition Surface Area (LDSA) in Operational Faces of an Oil Shale Underground Mine. Atmosphere 2024, 15, 200. https://doi.org/10.3390/atmos15020200
Sabanov S, Qureshi AR, Korshunova R, Kurmangazy G. Analysis of Experimental Measurements of Particulate Matter (PM) and Lung Deposition Surface Area (LDSA) in Operational Faces of an Oil Shale Underground Mine. Atmosphere. 2024; 15(2):200. https://doi.org/10.3390/atmos15020200
Chicago/Turabian StyleSabanov, Sergei, Abdullah Rasheed Qureshi, Ruslana Korshunova, and Gulim Kurmangazy. 2024. "Analysis of Experimental Measurements of Particulate Matter (PM) and Lung Deposition Surface Area (LDSA) in Operational Faces of an Oil Shale Underground Mine" Atmosphere 15, no. 2: 200. https://doi.org/10.3390/atmos15020200
APA StyleSabanov, S., Qureshi, A. R., Korshunova, R., & Kurmangazy, G. (2024). Analysis of Experimental Measurements of Particulate Matter (PM) and Lung Deposition Surface Area (LDSA) in Operational Faces of an Oil Shale Underground Mine. Atmosphere, 15(2), 200. https://doi.org/10.3390/atmos15020200