Evaluation of Crop Water Stress Index (CWSI) for High Tunnel Greenhouse Tomatoes under Different Irrigation Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design
2.3. Crop Water Requirement and Water Use Efficiency
2.4. Water Use Efficiency
2.5. Crop Water Stress Index
2.6. Crop Management
2.7. Measurements and Analyses of the Plants and Fruits
2.7.1. Morphological Measurements
2.7.2. Pomological Measurement and Analysis
2.8. Greenhouse Weather Data Measurements
Statistical Analysis
3. Results and Discussion
3.1. Morphological Properties of Tomatoes
3.2. Pomological Properties of the Tomatoes
3.3. Water Consumption and Water Use Efficiency (WUE)
3.4. Crop Water Stress Index (CWSI) and Baseline Equations
3.5. Relations between CWSI and Yield
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Çolak, Y.B.; Yazar, A.; Çolak, İ.; Akça, H.; Duraktekin, G. Evaluation of crop water stress index (CWSI) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Agric. Agric. Sci. Procedia 2015, 4, 372–382. [Google Scholar] [CrossRef]
- Agbemafle, R.; Owusu-Sekyere, J.; Bart-Plange, A.; Otchere, J. Effect of deficit irrigation and storage on physicochemical quality of tomato (Lycopersicon esculentum Mill. var. Pechtomech). Food Sci. Qual. Manag. 2014, 34, 113–118. [Google Scholar]
- Liu, J.; Hu, T.; Feng, P.; Yao, D.; Gao, F.; Hong, X. Effect of potassium fertilization during fruit development on tomato quality, potassium uptake, water and potassium use efficiency under deficit irrigation regime. Agric. Water Manag. 2021, 250, 106831. [Google Scholar] [CrossRef]
- Xiukang, W.; Yingying, X. Evaluation of the effect of irrigation and fertilization by drip fertigation on tomato yield and water use efficiency in greenhouse. Int. J. Agron. 2016, 2016, 3961903. [Google Scholar] [CrossRef]
- Yesdhanulla, S.; Aparna, B. Marketing channels and price spread of tomato in Chittoor district of Andhra Pradesh. J. Pharmacogn. Phytochem. 2018, 7, 873–876. [Google Scholar]
- Martínez-Damián, M.T.; Cano-Hernández, R.; Moreno-Pérez, E.C.; Sánchez-del Castillo, F.; Cruz-Álvarez, O. Effect of preharvest growth bioregulators on physicochemical quality of saladette tomato. Rev. Chapingo Ser. Hortic. 2019, 25, 29–43. [Google Scholar] [CrossRef]
- Atilgan, A.; Rolbiecki, R.; Saltuk, B.; Jagosz, B.; Arslan, F.; Erdal, I.; Aktas, H. Deficit Irrigation Stabilizes Fruit Yield and Alters Leaf Macro and Micronutrient Concentration in Tomato Cultivation in Greenhouses: A Case Study in Turkey. Agronomy 2022, 12, 2950. [Google Scholar] [CrossRef]
- Kırnak, H.; Kaya, C.; Degirmenci, V. Growth and yield parameters of bell peppers with surface and subsurface drip irrigation systems under different irrigation levels. Atatürk Üniv. Ziraat Fak. Derg. 2002, 33, 383–389. [Google Scholar]
- Sezen, S.M.; Yazar, A.; Eker, S. Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agric. Water Manag. 2006, 81, 115–131. [Google Scholar] [CrossRef]
- Lovelli, S.; Potenza, G.; Castronuovo, D.; Perniola, M.; Candido, V. Yield, quality and water use efficiency of processing tomatoes produced under different irrigation regimes in Mediterranean environment. Ital. J. Agron. 2017, 12, 1. [Google Scholar] [CrossRef]
- Tarı, A.F.; Sapmaz, M. The effect of different irrigation levels on the yield and quality of tomatoes in greenhouse. Toprak Su Dergisi 2017, 6, 11–17. [Google Scholar]
- Colimba-Limaico, J.E.; Zubelzu-Minguez, S.; Rodríguez-Sinobas, L. Optimal irrigation scheduling for greenhouse tomato crop (Solanum lycopersicum L.) in Ecuador. Agronomy 2022, 12, 1020. [Google Scholar] [CrossRef]
- Costa, L.D.; Gianquinto, G. Water stress and water table depth influence yield, water use efficiency, and nitrogen recovery in bell pepper: Lysimeter studies. Aust. J. Agric. Res. 2002, 53, 201–210. [Google Scholar] [CrossRef]
- Sivakumar, R.; Srividhya, S. Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.). Adv. Hortic. Sci. 2016, 30, 3–11. [Google Scholar] [CrossRef]
- Kirda, C. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. In Deficit Irrigation Practices FAO Water Raport; Heng, L.K., Moutonnet, P., Smith, M., Eds.; FAO: Rome, Italy, 2002; Volume 22, pp. 3–10. [Google Scholar]
- Erdem, Y.; Sehirali, S.; Erdem, T.; Kenar, D. Determination of crop water stress index for irrigation scheduling of bean (Phaseolus vulgaris L.). Turk. J. Agric. Forest 2006, 30, 195–202. [Google Scholar]
- Ucar, Y.; Kocięcka, J.; Liberacki, D.; Rolbiecki, R. Analysis of Crop Water Requirements for Apple Using Dependable Rainfall. Atmosphere 2023, 14, 99. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Jagosz, B.; Kasperska-Wołowicz, W.; Kanecka-Geszke, E.; Stachowski, P.; Kocięcka, J.; Bąk, B. Water Needs of Sweet Cherry Trees in the Light of Predicted Climate Warming in the Bydgoszcz Region, Poland. Atmosphere 2023, 14, 511. [Google Scholar] [CrossRef]
- Liberacki, D.; Kocięcka, J.; Stachowski, P.; Rolbiecki, R.; Rolbiecki, S.; Sadan, H.A.; Figas, A.; Jagosz, B.; Wichrowska, D.; Ptach, W.; et al. Water Needs of Willow (Salix L.) in Western Poland. Energies 2022, 15, 484. [Google Scholar] [CrossRef]
- Yazar, A.; Howell, A.T.; Dusek, D.A.; Copeland, K.S. Evaluation of crop water stress index for LEPA irrigated corn. Irrig. Sci. 1999, 18, 171–180. [Google Scholar] [CrossRef]
- Nuruddin, M.; Madramootoo, C.A.; Dodds, G.T. Effects of water stress at different growth stages on greenhouse tomato yield and quality. HortScience 2003, 38, 1389–1393. [Google Scholar] [CrossRef]
- Jamshidi, S.; Zand-Parsa, S.; Kamgar-Haghighi, A.A.; Shahsavar, A.R.; Niyogi, D. Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions. Agric. Water Manag. 2020, 227, 105838. [Google Scholar] [CrossRef]
- Jamshidia, S.; Zand-Parsab, S.; Niyogic, D. Assessing Crop Water Stress Index of Citrus Using In-Situ Measurements, Landsat, and Sentinel-2 Data. Int. J. Remote Sens. 2020, 42, 1893–1916. [Google Scholar] [CrossRef]
- Smith, R.C.G.; Barrs, H.D.; Steiner, J.L.; Stapper, M. Relationship between wheat yield and foliage temperature: Theory and its application to infrared measurements. Agric. For. Meteorol. 1985, 36, 129–143. [Google Scholar] [CrossRef]
- Stockle, C.O.; Dugas, W.A. Evaluating canopy temperaturebased indices for irrigation scheduling. Irrig. Sci. 1992, 13, 31–37. [Google Scholar] [CrossRef]
- Kovalenko, I.O.; Zhuravlov, O.V. Using the water stress index for tomato irrigation control. Land Reclam. Water Manag. 2023, 1, 51–59. [Google Scholar] [CrossRef]
- Sezen, S.M.; Yazar, A.; Daşgan, Y.; Yucel, S.; Akyıldız, A.; Tekin, S.; Akhoundnejad, Y. Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes. Agric. Water Manag. 2014, 143, 59–70. [Google Scholar] [CrossRef]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981, 7, 1133–1138. [Google Scholar] [CrossRef]
- Idso, S.B. Non-water stressed baseline: A key to measuring and interpreting plant water stress. Agric. Meteorol. 1982, 27, 59–70. [Google Scholar] [CrossRef]
- López-López, R.; Ramírez, A.R.; Sánchez-Cohen, I.; Bustamante, W.O.; González-Lauck, V. Evapotranspiration and Crop Water Stress Index in Mexican Husk Tomatoes (Physalis ixocarpa Brot). In Evapotranspiration—From Measurements to Agricultural and Environmental Applications; Gerosa, G., Ed.; InTechOpen: London, UK, 2011; pp. 187–210. [Google Scholar] [CrossRef]
- Bartzanas, T.; Katsoulas, N.; Elvanidi, A.; Ferentinos, K.P.; Kittas, C. Remote Sensing for Crop Water Stress Detection in Greenhouses; Precision Agriculture ′15; Wageningen Academic Print Publication: Wageningen, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Erdem, Y.; Arin, L.; Erdem, T.; Polat, S.; Deveci, M.; Okursoy, H.; Gültaş, H.T. Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica). Agric. Water Manag. 2010, 98, 148–156. [Google Scholar] [CrossRef]
- Meteoroloji Genel Müdürlüğü. Climate Kırşehir (Turkey). Available online: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=KIRSEHIR (accessed on 15 October 2023).
- USSL. Diagnoses and Improvement of Saline and Alkali Soils; Richards, L.A., Ed.; United State Salinity Laboratory Staff, USDA_SCS, Agric. Handbook No. 60; USSL: Washington, DC, USA, 1954; 160p. [Google Scholar]
- Kurunc, A.; Unlukara, A.; Cemek, B. Salinity and drought affect yield response of bell pepper similarly. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61, 514–522. [Google Scholar] [CrossRef]
- Ünlükara, A.; Kurunc, A.; Cemek, B. Green Long Pepper Growth under Different Saline and Water Regime Conditions and Usability of Water Consumption in Plant Salt Tolerance. J. Agric. Sci. 2015, 21, 167–176. [Google Scholar] [CrossRef]
- List, R.J. Smithsonian Meteorological Tables; Smithsonian Misc Collections: Washington, DC, USA, 1971; p. 381. [Google Scholar]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J., Jr.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Özkaplan, M.; Balkaya, A. The effects of light and temperature on the fruit quality parameters of cluster tomatoes growing in soilless culture. Anadolu J. Agric. Sci. 2019, 34, 227–238. [Google Scholar] [CrossRef]
- McGuire, G.R. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Tüzel, Y.; Duyar, H.; Öztekin, G.B.; Gül, A. Domates Anaçlarının Farklı Dikim Tarihlerinde Bitki Gelişimi, Sıcaklık Toplamı İsteği, Verim ve Kaliteye Etkileri. Ege Üniv. Ziraat Fak. Derg. 2009, 46, 79–92. [Google Scholar]
- Boyacı, S.; Akyüz, A. Effect of greenhouse cooling methods on the growth and yield of tomato in a Mediterranean climate. Int. J. Hortic. Agric. Food Sci. (IJHAF) 2018, 2, 199–207. [Google Scholar]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Nangare, D.; Singh, Y.; Kumar, P.S.; Minhas, P. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric. Water Manag. 2016, 171, 73–79. [Google Scholar] [CrossRef]
- Batu, A. Determination of acceptable firmness and colour values of tomatoes. J. Food Eng. 2004, 61, 471–475. [Google Scholar] [CrossRef]
- Brown, A. Understanding Food Principles and Preparation; Thomson Wadsworth: Belmont, CA, USA, 2007; pp. 245–266. [Google Scholar]
- Hong, M.; Zhang, Z.; Fu, Q.; Liu, Y. Water requirement of solar greenhouse tomatoes with drip irrigation under mulch in the Southwest of the Taklimakan Desert. Water 2022, 14, 3050. [Google Scholar] [CrossRef]
- Özkaplan, M. Serada Topraksiz Domates Yetiştiriciliğinde Büyüme, GelişMe ve Verim Üzerine Işik ve Sıcaklığın Kantitatif Etkilerinin Modellenmesi. Master’s Thesis, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Samsun, Türkiye, 2018. [Google Scholar]
- Radzevičius, A.; Karklelienė, R.; Viškelis, P.; Bobinas, C.; Bobinaitė, R.; Sakalauskienė, S. Tomato (Lycopersicon esculentum Mill.) fruit quality and physiological parameters at different ripening stages of; Lithuanian cultivars. Agron. Res. 2009, 7, 712–718. [Google Scholar]
- Yao, M.; Gao, M.; Wang, J.; Li, B.; Mao, L.; Zhao, M.; Xu, Z.; Niu, H.; Wang, T.; Sun, L.; et al. Estimating evapotranspiration of greenhouse tomato under different irrigation levels using a modified dual crop coefficient model in Northeast China. Agriculture 2023, 13, 1741. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Xu, J.; Wan, W.; Zhu, X.; Zhao, Y.; Chai, Y.; Guan, S.; Diao, M. Effect of regulated deficit irrigation on the growth, yield, and irrigation water productivity of processing tomatoes under drip irrigation and mulching. Agronomy 2023, 13, 2862. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2012, 57, 175–206. [Google Scholar] [CrossRef]
- Roh, M.Y.; Nam, Y.I.; Cho, M.W.; Yu, I.H.; Choi, G.L.; Kim, T.Y. Environmental control in greenhouse based on phytomonitoring—Leaf temperature as a factor controlling greenhouse environments. Acta Hortic. 2007, 761, 71–76. [Google Scholar] [CrossRef]
- Langton, F.A.; Horridge, J.S.; Hamer, P.J.C. Effects of the glasshouse environment on leaf temperature of pot Chrysanthemum and Dieffenbachia. Acta Hortic. 2000, 534, 75–84. [Google Scholar] [CrossRef]
- Ru, C.; Hu, X.; Wang, W.; Ran, H.; Song, T.; Guo, Y. Evaluation of the crop water stress index as an indicator for the diagnosis of grapevine water deficiency in greenhouses. Horticulturae 2020, 6, 86. [Google Scholar] [CrossRef]
- Bo, L.; Tieliang, W.; Jian, S. Crop water stress index for off-season greenhouse green peppers in Liaoning, China. Int. J. Agric. Biol. Eng. 2014, 7, 28–35. [Google Scholar]
- Bucks, D.; Nakavamma, F.; French, O.; Regard, W.; Alexander, W. Irrigated guayule evapotranspiration and plant water stress. Agric. Water Manag. 1985, 10, 61–79. [Google Scholar] [CrossRef]
- Alordzinu, K.E.; Li, J.; Lan, Y.; Appiah, S.A.; AL Aasmi, A.; Wang, H. Rapid estimation of crop water stress index on tomato growth. Sensors 2021, 21, 5142. [Google Scholar] [CrossRef] [PubMed]
- Uçak, A.B.; Atılgan, A.; Korytowski, M.; Kocięcka, J.; Liberacki, D.; Stachowski, P.; Saltuk, B.; Rolbiecki, R. Derinkuyu dry bean irrigation planning in semi-arid climate by utilising crop water stress index values. J. Water Land Dev. 2023, 59, 1–8. [Google Scholar] [CrossRef]
Year | Climatic Parameters | May | June | July | August |
---|---|---|---|---|---|
2021 | Tmax, °C | 31.6 | 33.0 | 35.0 | 29.2 |
Tmin, °C | 3.9 | 10.6 | 11.6 | 12.1 | |
Tmean, °C | 16.0 | 20.2 | 22.0 | 20.3 | |
RHmean, % | 59.0 | 60.5 | 50.9 | 52.9 | |
Long-term (1930–2021) | Tmax, °C | 22.1 | 26.3 | 29.9 | 30.0 |
Tmin, °C | 8.6 | 12.4 | 15.6 | 15.6 | |
Tmean, °C | 15.5 | 19.7 | 23.1 | 23.0 | |
RHmean, % | 60.2 | 54.2 | 47.6 | 47.6 | |
Rainfall, mm | 44.3 | 34.6 | 8.3 | 7.9 | |
Evaporation, mm | 159.7 | 218.0 | 299.3 | 287.6 |
pH | EC, dS m−1 | Anions, meq L−1 | Cations, meq L−1 | SAR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca | Mg | K | Na | CO3 | HCO3 | Cl | SO4 | |||
7.70 | 0.62 | 2.8 | 1.20 | 0.05 | 1.40 | 0 | 5 | 0.3 | 0.3 | 1.40 |
Measurement | Treatment | ||||
---|---|---|---|---|---|
I120 | I100 | I80 | I60 | Imean | |
Stem diameter (mm) | 11.2 b | 13.1 a | 12.7 a | 11.1 b | 12.0 |
Plant height (cm) | 92.6 b | 104.7 a | 87.0 bc | 81.1 c | 91.3 |
Number of leaves (pieces) | 20.1 a | 18.6 b | 18.2 b | 18.1 b | 18.8 |
Stem wet weight (g) | 204.1 c | 232.7 a | 208.0 b | 102.1 d | 186.7 |
Stem dry weight (g) | 65.6 b | 70.6 a | 65.2 b | 40.3 c | 60.4 |
Root wet weight (g) | 115.2 b | 136.1 a | 65.2 c | 42.5 d | 89.7 |
Root dry weight (g) | 55.6 b | 80.5 a | 35.1 c | 30.3 d | 50.4 |
Root lenght (cm) | 34.0 a | 33.6 a | 29.3 b | 29.0 b | 31.5 |
Measurement | Treatment | ||||
---|---|---|---|---|---|
I120 | I100 | I80 | I60 | Imean | |
Fruit width (mm) | 59.4 a | 61.6 a | 59.6 a | 51.8 b | 58.1 |
Fruit length (mm) | 50.2 ab | 51.7 a | 52.0 a | 44.7 b | 49.7 |
Fruit weight (g) | 97.1 a | 97.8 a | 82.1 b | 73.6 c | 87.7 |
pH | 4.1 c | 4.2 b | 4.3 a | 4.2 b | 4.2 |
Firmness (kg m−2) | 2.6 a | 2.5 a | 1.82 b | 1.5 c | 2.1 |
Titratable Acidity (%) | 0.38 ab | 0.31 c | 0.37 b | 0.39 a | 0.4 |
Total Soluble Solids, (°Brix) | 5.3 c | 5.0 d | 5.6 b | 6.0 a | 5.5 |
Hue° | 24.2 b | 23.7 c | 25.6 a | 23.9 bc | 24.3 |
Crome | 48.4 c | 66.0 a | 44.6 c | 63.2 b | 45.8 |
Treatment | I60 | I80 | I100 | I120 |
---|---|---|---|---|
ET (L) | 17.2 d | 21.6 c | 24.3 b | 28.7 a |
Total Yield (g pot−1) | 663.0 d | 853.4 c | 1075.2 b | 1184.8 a |
Marketable Yield (g pot−1) | 603.0 d | 783.4 c | 1002.0 b | 1112.8 a |
Total WUE (g L−1) | 38.5 b | 39.5 b | 44.2 a | 41.3 ab |
Marketable WUE (g L−1) | 35.0 c | 36.2 c | 41.2 a | 38.8 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyaci, S.; Kocięcka, J.; Atilgan, A.; Liberacki, D.; Rolbiecki, R.; Saltuk, B.; Stachowski, P. Evaluation of Crop Water Stress Index (CWSI) for High Tunnel Greenhouse Tomatoes under Different Irrigation Levels. Atmosphere 2024, 15, 205. https://doi.org/10.3390/atmos15020205
Boyaci S, Kocięcka J, Atilgan A, Liberacki D, Rolbiecki R, Saltuk B, Stachowski P. Evaluation of Crop Water Stress Index (CWSI) for High Tunnel Greenhouse Tomatoes under Different Irrigation Levels. Atmosphere. 2024; 15(2):205. https://doi.org/10.3390/atmos15020205
Chicago/Turabian StyleBoyaci, Sedat, Joanna Kocięcka, Atilgan Atilgan, Daniel Liberacki, Roman Rolbiecki, Burak Saltuk, and Piotr Stachowski. 2024. "Evaluation of Crop Water Stress Index (CWSI) for High Tunnel Greenhouse Tomatoes under Different Irrigation Levels" Atmosphere 15, no. 2: 205. https://doi.org/10.3390/atmos15020205
APA StyleBoyaci, S., Kocięcka, J., Atilgan, A., Liberacki, D., Rolbiecki, R., Saltuk, B., & Stachowski, P. (2024). Evaluation of Crop Water Stress Index (CWSI) for High Tunnel Greenhouse Tomatoes under Different Irrigation Levels. Atmosphere, 15(2), 205. https://doi.org/10.3390/atmos15020205