Giant Aufeis in the Pangong Tso Basin: Inventory of a Neglected Cryospheric Component in Eastern Ladakh and Western Tibet
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 131–202. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential Impacts of a Warming Climate on Water Availability in Snow-Dominated Regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and Vulnerability of the World’s Water Towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Viviroli, D.; Kummu, M.; Meybeck, M.; Kallio, M.; Wada, Y. Increasing Dependence of Lowland Populations on Mountain Water Resources. Nat. Sustain. 2020, 3, 917–928. [Google Scholar] [CrossRef]
- Kaser, G.; Großhauser, M.; Marzeion, B. Contribution Potential of Glaciers to Water Availability in Different Climate Regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef]
- Carey, M.; Molden, O.C.; Rasmussen, M.B.; Jackson, M.; Nolin, A.W.; Mark, B.G. Impacts of Glacier Recession and Declining Meltwater on Mountain Societies. Ann. Am. Assoc. Geogr. 2017, 107, 350–359. [Google Scholar] [CrossRef]
- Mukherji, A.; Sinisalo, A.; Nüsser, M.; Garrard, R.; Eriksson, M. Contributions of the Cryosphere to Mountain Communities in the Hindu Kush Himalaya: A Review. Reg. Environ. Chang. 2019, 19, 1311–1326. [Google Scholar] [CrossRef]
- Parveen, S.; Winiger, M.; Schmidt, S.; Nüsser, M. Irrigation in Upper Hunza: Evolution of Socio-Hydrological Interactions in the Karakoram, Northern Pakistan. Erdkunde 2015, 69, 69–85. [Google Scholar] [CrossRef]
- Nüsser, M.; Schmidt, S. Nanga Parbat Revisited: Evolution and Dynamics of Socio-Hydrological Interactions in the Northwestern Himalaya. Ann. Am. Assoc. Geogr. 2017, 107, 403–415. [Google Scholar] [CrossRef]
- Armstrong, R.L.; Rittger, K.; Brodzik, M.J.; Racoviteanu, A.; Barrett, A.P.; Khalsa, S.-J.S.; Raup, B.; Hill, A.F.; Khan, A.L.; Wilson, A.M.; et al. Runoff from Glacier Ice and Seasonal Snow in High Asia: Separating Melt Water Sources in River Flow. Reg. Environ. Chang. 2019, 19, 1249–1261. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Rounce, D.R.; Hock, R.; Maussion, F.; Hugonnet, R.; Kochtitzky, W.; Huss, M.; Berthier, E.; Brinkerhoff, D.; Compagno, L.; Copland, L.; et al. Global Glacier Change in the 21st Century: Every Increase in Temperature Matters. Science 2023, 379, 78–83. [Google Scholar] [CrossRef]
- Dharpure, J.K.; Goswami, A.; Patel, A.; Kulkarni, A.V. Snehmani Assessment of Snow Cover Variability and Its Sensitivity to Hydrometeorological Factors in the Karakoram and Himalayan Region. Hydrol. Sci. J. 2021, 66, 2198–2215. [Google Scholar] [CrossRef]
- Notarnicola, C. Hotspots of Snow Cover Changes in Global Mountain Regions over 2000–2018. Remote Sens. Environ. 2020, 243, 111781. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost Is Warming at a Global Scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Gruber, S.; Fleiner, R.; Guegan, E.; Panday, P.; Schmid, M.-O.; Stumm, D.; Wester, P.; Zhang, Y.; Zhao, L. Review Article: Inferring Permafrost and Permafrost Thaw in the Mountains of the Hindu Kush Himalaya Region. Cryosphere 2017, 11, 81–99. [Google Scholar] [CrossRef]
- Nüsser, M.; Baghel, R. Local Knowledge and Global Concerns: Artificial Glaciers as a Focus of Environmental Knowledge and Development Interventions. In Ethnic and Cultural Dimensions of Knowledge; Meusburger, P., Freytag, T., Suarsana, L., Eds.; Knowledge and Space; Springer: Cham, Switzerland, 2016; pp. 191–209. ISBN 978-3-319-21900-4. [Google Scholar] [CrossRef]
- Nüsser, M.; Dame, J.; Kraus, B.; Baghel, R.; Schmidt, S. Socio-Hydrology of “Artificial Glaciers” in Ladakh, India: Assessing Adaptive Strategies in a Changing Cryosphere. Reg. Environ. Chang. 2019, 19, 1327–1337. [Google Scholar] [CrossRef]
- Nüsser, M.; Dame, J.; Parveen, S.; Kraus, B.; Baghel, R.; Schmidt, S. Cryosphere-Fed Irrigation Networks in the Northwestern Himalaya: Precarious Livelihoods and Adaptation Strategies Under the Impact of Climate Change. Mt. Res. Dev. 2019, 39, R1–R11. [Google Scholar] [CrossRef]
- Clouse, C. Frozen Landscapes: Climate-Adaptive Design Interventions in Ladakh and Zanskar. Landsc. Res. 2016, 41, 821–837. [Google Scholar] [CrossRef]
- Carey, K.L. Icings Developed from Surface Water and Ground Water; Cold Reg. Res. Eng. Monogr. III-D3; US Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1973. [Google Scholar]
- Barry, R.G.; Gan, T.Y. The Global Cryosphere: Past, Present, and Future, 2nd ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-108-48755-9. [Google Scholar]
- Harris, S.; French, H.; Heginbottom, J.; Johnston, G.; Ladanyi, B.; Sego, D.; Everdingen, R. Glossary of Permafrost and Related Ground-Ice Terms; National Research Council of Canada, Associate Committee on Geotechnical Research, Permafrost Subcommittee: Ottawa, ON, Canada, 1988; p. 159. [CrossRef]
- Morse, P.D.; Wolfe, S.A. Geological and Meteorological Controls on Icing (Aufeis) Dynamics (1985 to 2014) in Subarctic Canada. J. Geophys. Res. Earth Surf. 2015, 120, 1670–1686. [Google Scholar] [CrossRef]
- Woo, M.-K. Permafrost Hydrology; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-23461-3. [Google Scholar] [CrossRef]
- Alekseev, V.R. Long-term variability of the spring taryn-aufeises. Ice Snow 2016, 56, 73–92. [Google Scholar] [CrossRef]
- Zemlianskova, A.; Makarieva, O.; Shikhov, A.; Alekseev, V.; Nesterova, N.; Ostashov, A. The Impact of Climate Change on Seasonal Glaciation in the Mountainous Permafrost of North-Eastern Eurasia by the Example of the Giant Anmangynda Aufeis. Catena 2023, 233, 107530. [Google Scholar] [CrossRef]
- Ensom, T.; Makarieva, O.; Morse, P.; Kane, D.; Alekseev, V.; Marsh, P. The Distribution and Dynamics of Aufeis in Permafrost Regions. Permafr. Periglac. Process. 2020, 31, 383–395. [Google Scholar] [CrossRef]
- Makarieva, O.; Shikhov, A.; Nesterova, N.; Ostashov, A. Historical and Recent Aufeis in the Indigirka River Basin (Russia). Earth Syst. Sci. Data 2019, 11, 409–420. [Google Scholar] [CrossRef]
- Makarieva, O.; Nesterova, N.; Shikhov, A.; Zemlianskova, A.; Luo, D.; Ostashov, A.; Alexeev, V. Giant Aufeis—Unknown Glaciation in North-Eastern Eurasia According to Landsat Images 2013–2019. Remote Sens. 2022, 14, 4248. [Google Scholar] [CrossRef]
- Brombierstäudl, D.; Schmidt, S.; Nüsser, M. Distribution and Relevance of Aufeis (Icing) in the Upper Indus Basin. Sci. Total Environ. 2021, 780, 146604. [Google Scholar] [CrossRef] [PubMed]
- Brombierstäudl, D.; Schmidt, S.; Nüsser, M. Spatial and Temporal Dynamics of Aufeis in the Tso Moriri Basin, Eastern Ladakh, India. Permafr. Periglac. Process. 2023, 34, 81–93. [Google Scholar] [CrossRef]
- Gagarin, L.; Wu, Q.; Cao, W.; Jiang, G. Icings of the Kunlun Mountains on the Northern Margin of the Qinghai-Tibet Plateau, Western China: Origins, Hydrology and Distribution. Water 2022, 14, 2396. [Google Scholar] [CrossRef]
- Kamp, U.; Walther, M.; Dashtseren, A. Mongolia’s Cryosphere. Geomorphology 2022, 410, 108202. [Google Scholar] [CrossRef]
- Strachey, H. Physical Geography of Western Tibet. J. R. Geogr. Soc. Lond. 1853, 23, 1–69. [Google Scholar] [CrossRef]
- De Terra, H. Physiographic Results of a Recent Survey in Little Tibet. Geogr. Rev. 1934, 24, 12–41. [Google Scholar] [CrossRef]
- Hedin, S.A. Im Herzen von Asien; Brockhaus: Leipzig, Germany, 1903; Volume 2. [Google Scholar]
- Srikantiai, S.V.; Ganesan, T.M.; Wangdus, C. A Note on the Tectonic Framework and Geologic Set-up of the Pangong-Chushul Sector, Ladakh Himalaya. J. Geol. Soc. India 1982, 2, 354–357. [Google Scholar]
- Bhat, H.; Mahapatra, D.M.; Rao, S.; Ramachandra, T.V. Avian Diversity of Ladakh Wetlands; ENERGY and Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science: Bangalore, India, 2010; pp. 1–5. [Google Scholar]
- Dortch, J.M.; Owen, L.A.; Caffee, M.W.; Kamp, U. Catastrophic Partial Drainage of Pangong Tso, Northern India and Tibet. Geomorphology 2011, 125, 109–121. [Google Scholar] [CrossRef]
- Huntington, E. Pangong: A Glacial Lake in the Tibetan Plateau. J. Geol. 1906, 14, 599–617. [Google Scholar] [CrossRef]
- Rathour, R.; Gupta, J.; Mishra, A.; Rajeev, A.C.; Dupont, C.L.; Thakur, I.S. A Comparative Metagenomic Study Reveals Microbial Diversity and Their Role in the Biogeochemical Cycling of Pangong Lake. Sci. Total Environ. 2020, 731, 139074. [Google Scholar] [CrossRef] [PubMed]
- Dvorský, M.; Klimeš, L.; Doležal, J. A Field Guide to the Flora of Ladakh, 1st ed.; Academia: Praha, Czech Republic, 2018; ISBN 978-80-200-2826-6. [Google Scholar]
- Dvorský, M.; Altman, J.; Kopecký, M.; Chlumská, Z.; Řeháková, K.; Janatková, K.; Doležal, J. Vascular Plants at Extreme Elevations in Eastern Ladakh, Northwest Himalayas. Plant Ecol. Divers. 2015, 8, 571–584. [Google Scholar] [CrossRef]
- Rawat, G.S. The Himalayan Vegetation along Horizontal and Vertical Gradients. In Bird Migration across the Himalayas: Wetland Functioning amidst Mountains and Glaciers; Prins, H.H.T., Namgail, T., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 189–204. ISBN 978-1-316-33542-0. [Google Scholar]
- Humbert-Droz, B. Impacts of Tourism and Military Presence on Wetlands and Their Avifauna in the Himalayas. In Bird Migration across the Himalayas: Wetland Functioning amidst Mountains and Glaciers; Prins, H.H.T., Namgail, T., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 342–358. ISBN 978-1-316-33542-0. [Google Scholar] [CrossRef]
- Ladon, P.; Nüsser, M.; Garkoti, S.C. Mountain Agropastoralism: Traditional Practices, Institutions and Pressures in the Indian Trans-Himalaya of Ladakh. Pastoralism 2023, 13, 30. [Google Scholar] [CrossRef]
- Shaoliang, Y.; Ning, W.; Peng, L.; Qian, W.; Fusun, S.; Geng, S.; Jianzhong, M. Changes in Livestock Migration Patterns in a Tibetan-Style Agropastoral System: A Study in the Three-Parallel-Rivers Region of Yunnan, China. Mt. Res. Dev. 2007, 27, 138–145. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, R.K.; Babu, S. Pastoralism in Transition: Livestock Abundance and Herd Composition in Spiti, Trans-Himalaya. Hum. Ecol. 2015, 43, 799–810. [Google Scholar] [CrossRef]
- Baghel, R.; Nüsser, M. Securing the Heights: The Vertical Dimension of the Siachen Conflict between India and Pakistan in the Eastern Karakoram. Polit. Geogr. 2015, 48, 24–36. [Google Scholar] [CrossRef]
- Ghosal, S.; Ahmed, M. Pastoralism and Wetland Resources in Ladakh’s Changthang Plateau. In Bird Migration across the Himalayas: Wetland Functioning amidst Mountains and Glaciers; Prins, H.H.T., Namgail, T., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 333–341. ISBN 978-1-316-33542-0. [Google Scholar]
- Namgail, T.; Bhatnagar, Y.V.; Mishra, C.; Bagchi, S. Pastoral Nomads of the Indian Changthang: Production System, Landuse and Socioeconomic Changes. Hum. Ecol. 2007, 35, 497–504. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, B.; Yao, Y.; Zhao, F.; Zhang, S.; He, W. A Topographical Model for Precipitation Pattern in the Tibetan Plateau. J. Mt. Sci. 2016, 13, 763–773. [Google Scholar] [CrossRef]
- Böhner, J. General Climatic Controls and Topoclimatic Variations in Central and High Asia. Boreas 2006, 35, 279–295. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Ye, M.; Che, T.; Zhang, G. Estimating Daily Air Temperatures over the Tibetan Plateau by Dynamically Integrating MODIS LST Data. J. Geophys. Res. Atmos. 2016, 121, 11425–11441. [Google Scholar] [CrossRef]
- Xu, Z.X.; Gong, T.L.; Li, J.Y. Decadal Trend of Climate in the Tibetan Plateau—Regional Temperature and Precipitation. Hydrol. Process. 2008, 22, 3056–3065. [Google Scholar] [CrossRef]
- Wang, X.; Pang, G.; Yang, M. Precipitation over the Tibetan Plateau during Recent Decades: A Review Based on Observations and Simulations. Int. J. Climatol. 2018, 38, 1116–1131. [Google Scholar] [CrossRef]
- Schmidt, S.; Nüsser, M. Changes of High Altitude Glaciers in the Trans-Himalaya of Ladakh over the Past Five Decades (1969–2016). Geosciences 2017, 7, 27. [Google Scholar] [CrossRef]
- Soheb, M.; Ramanathan, A.; Bhardwaj, A.; Coleman, M.; Rea, B.; Spagnolo, M.; Singh, S.; Sam, L. Multitemporal Glacier Inventory Revealing Four Decades of Glacier Changes in the Ladakh Region. Earth Syst. Sci. Data 2022, 14, 4171–4185. [Google Scholar] [CrossRef]
- Dortch, J.M. Timing and Climatic Drivers for Glaciation across Semi-Arid Western Himalayan-Tibetan Orogen. Quat. Sci. Rev. 2013, 78, 188–208. [Google Scholar] [CrossRef]
- Godwin-Austen, H.H. Notes on the Pangong Lake District of Ladakh, from a Journal Made during a Survey in 1863. J. R. Geogr. Soc. Lond. 1867, 37, 343–363. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived from Spaceborne Elevation Data. Eos Trans. Am. Geophys. Union 2008, 89, 93. [Google Scholar] [CrossRef]
- Crites, H.; Kokelj, S.V.; Lacelle, D. Icings and Groundwater Conditions in Permafrost Catchments of Northwestern Canada. Sci. Rep. 2020, 10, 3283. [Google Scholar] [CrossRef]
- Schmidt, S.; Nüsser, M. Changes of High Altitude Glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, Northwest India. Arct. Antarct. Alp. Res. 2012, 44, 107–121. [Google Scholar] [CrossRef]
- Paul, F.; Huggel, C.; Kääb, A. Combining Satellite Multispectral Image Data and a Digital Elevation Model for Mapping Debris-Covered Glaciers. Remote Sens. Environ. 2004, 89, 510–518. [Google Scholar] [CrossRef]
- Nüsser, M.; Schmidt, S. Glacier Changes on the Nanga Parbat 1856–2020: A Multi-Source Retrospective Analysis. Sci. Total Environ. 2021, 785, 147321. [Google Scholar] [CrossRef] [PubMed]
- Racoviteanu, A.; Williams, M.W. Decision Tree and Texture Analysis for Mapping Debris-Covered Glaciers in the Kangchenjunga Area, Eastern Himalaya. Remote Sens. 2012, 4, 3078–3109. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Walther, M.; Batsaikhan, V.; Dashtseren, A.; Jambaljav, Y.; Temujin, K.; Ulanbayar, G.; Kamp, U. The Formation of Aufeis and Its Impact on Infrastructure around Ulaanbaatar, North-Central Mongolia. Erforsch. Biol. Ressourcen Mong. 2021, 14, 385–398. [Google Scholar]
- Huryn, A.D.; Gooseff, M.N.; Hendrickson, P.J.; Briggs, M.A.; Tape, K.D.; Terry, N.C. Aufeis Fields as Novel Groundwater-Dependent Ecosystems in the Arctic Cryosphere. Limnol. Oceanogr. 2021, 66, 607–624. [Google Scholar] [CrossRef]
- Nüsser, M.; Schmidt, S.; Dame, J. Irrigation and Development in the Upper Indus Basin: Characteristics and Recent Changes of a Socio-Hydrological System in Central Ladakh, India. Mt. Res. Dev. 2012, 32, 51–61. [Google Scholar] [CrossRef]
- Alekseev, V.R. Cryogenesis and Geodynamics of Icing Valleys. Geodyn. Tectonophys. 2015, 6, 171–224. [Google Scholar] [CrossRef]
- Harden, D.; Barnes, P.; Reimnitz, E. Distribution and Character of Naleds in Northeastern Alaska. Arctic 1977, 30, 1–30. [Google Scholar] [CrossRef]
- Wohl, E.; Scamardo, J.E. Aufeis as a Major Forcing Mechanism for Channel Avulsion and Implications of Warming Climate. Geophys. Res. Lett. 2022, 49, e2022GL100246. [Google Scholar] [CrossRef]
- Kane, D.L. Physical Mechanics of Aufeis Growth. Can. J. Civ. Eng. 1981, 8, 186–195. [Google Scholar] [CrossRef]
- Liu, W.; Fortier, R.; Molson, J.; Lemieux, J.-M. A Conceptual Model for Talik Dynamics and Icing Formation in a River Floodplain in the Continuous Permafrost Zone at Salluit, Nunavik (Quebec), Canada. Permafr. Periglac. Process. 2021, 32, 468–483. [Google Scholar] [CrossRef]
- Terry, N.; Grunewald, E.; Briggs, M.; Gooseff, M.; Huryn, A.D.; Kass, M.A.; Tape, K.D.; Hendrickson, P.; Lane, J.W., Jr. Seasonal Subsurface Thaw Dynamics of an Aufeis Feature Inferred from Geophysical Methods. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005345. [Google Scholar] [CrossRef]
- Pavelsky, T.M.; Zarnetske, J.P. Rapid Decline in River Icings Detected in Arctic Alaska: Implications for a Changing Hydrologic Cycle and River Ecosystems. Geophys. Res. Lett. 2017, 44, 3228–3235. [Google Scholar] [CrossRef]
Dataset | Tiles | Acquisition Date (Spring) | Acquisition Date (Autumn) | Spatial Resolution | Spectral Resolution |
---|---|---|---|---|---|
Sentinel-2 a | T44SKC | 10 May 2021 | 12 September 2019, 23 September 2023 | 10 m 20 m | VIS *, NIR * SWIR 1 * |
T44SLD | 27 April 2019 | 14 September 2019, 23 September 2023 | |||
T44SLC | 20 April 2019 7 May 2019 | 12/19 September 2019, 23 September 2023 | |||
T44SLB | 5/7 May 2019 | 7/9 September 2019, 23 September 2023 | |||
T44SMD | 5/7 May 2019 | 9 September 2019, 23 September 2023 | |||
T44SMC | 5/7 May 2019 | 9 September 2019, 23 September 2023 | |||
T44SMB | 5/7 May 2019 | 9 September 2019, 23 September 2023 | |||
T44SNC | 20 April 2019 | 9 September 2019, 23 September 2023 | |||
T44SNB | 7 May 2019 | 9 September 2019, 23 September 2023 | |||
Landsat 5 b | 145/037 | 24 September 1994 | 30 m | VIS *, NIR * | |
Landsat 7 b | 145/037 | 29 September 1999 | |||
Landsat 5 b | 146/036 | 23 September 2023 | |||
Landsat 8 b | 146/036 | 8 September 2015 | |||
ALOS World 3D/AW3D30 c | N033-34E078 N032-34E079 N032-34E080 N032-34E081 | 30 m | |||
Hydro SHEDS d | HydroBASINS HydroRIVERS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitt, T.; Brombierstäudl, D.; Schmidt, S.; Nüsser, M. Giant Aufeis in the Pangong Tso Basin: Inventory of a Neglected Cryospheric Component in Eastern Ladakh and Western Tibet. Atmosphere 2024, 15, 263. https://doi.org/10.3390/atmos15030263
Schmitt T, Brombierstäudl D, Schmidt S, Nüsser M. Giant Aufeis in the Pangong Tso Basin: Inventory of a Neglected Cryospheric Component in Eastern Ladakh and Western Tibet. Atmosphere. 2024; 15(3):263. https://doi.org/10.3390/atmos15030263
Chicago/Turabian StyleSchmitt, Tobias, Dagmar Brombierstäudl, Susanne Schmidt, and Marcus Nüsser. 2024. "Giant Aufeis in the Pangong Tso Basin: Inventory of a Neglected Cryospheric Component in Eastern Ladakh and Western Tibet" Atmosphere 15, no. 3: 263. https://doi.org/10.3390/atmos15030263
APA StyleSchmitt, T., Brombierstäudl, D., Schmidt, S., & Nüsser, M. (2024). Giant Aufeis in the Pangong Tso Basin: Inventory of a Neglected Cryospheric Component in Eastern Ladakh and Western Tibet. Atmosphere, 15(3), 263. https://doi.org/10.3390/atmos15030263