The Impact of Vertical Eddy Diffusivity Changes in the CMAQ Model on PM2.5 Concentration Variations in Northeast Asia: Focusing on the Seoul Metropolitan Area
Abstract
:1. Introduction
2. Methodology
2.1. Model Configuration
2.2. Experimental Design
2.3. Target Cases and Regions
2.4. Analysis Methodology
3. Results and Discussion
3.1. Case Analysis
3.1.1. Local Influence Period
3.1.2. Long-Range Transport Influence Period
3.2. Long-Term Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, C.; Creswick, J.; Linn, L.; Muchnik, A. New WHO Global Air Quality Guidelines Aim to Save Millions of Lives from Air Pollution; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Kloong, I.; Ridgway, B.; Koutrakis, P.; Coull, B.A.; Shwartz, J.D. Long-and short term exposure to PM2.5 and morality: Using novel exposure models. Epidemiology 2013, 24, 555–561. [Google Scholar] [CrossRef]
- Sram, R.J.; Binkova, B.; Rossner, P.; Rubes, J.; Topinka, J.; Dejmek, J. Adverse reproductive outcomes from exposure to environmental mutagens. Mutat. Res. 1999, 428, 203–215. [Google Scholar] [CrossRef]
- Szyszkowicz, M.; Kousha, T.; Castner, J. Air pollution and emergency department visits for conjunctivitis: A case-crossover study. Int. J. Occup. Med. Environ. Health 2016, 29, 381–393. [Google Scholar] [CrossRef]
- Li, Z.; Tang, Y.; Song, X.; Lazar, L.; Li, Z.; Zhao, J. Impact of ambient PM2.5 on adverse birth outcome and potential molecular mechanism. Ecotoxicol. Environ. Saf. 2019, 169, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Trnka, D. Policies, Regulatory Framework and Enforcement for Air Quality Management: The Case of Korea. In OECD Environment Working Papers; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G.; et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Mohamed Tahrin, N. Impact of Gaseous Pollutants Reduction on Fine Particulate Matter and Its Secondary Inorganic Aerosols in Beijing-Tianjin-Hebei Region. Atmosphere 2023, 14, 1027. [Google Scholar] [CrossRef]
- Fameli, K.M.; Kladakis, A.; Assimakopoulos, V.D. Inventory of Commerical Cooking Activities and Emissions in a Typical Urban Area in Greece. Atmosphere 2022, 13, 792. [Google Scholar] [CrossRef]
- Sillman, S.; Logan, J.A.; Wofsy, S.C. Aregional scale model for ozone in the United States with subgrid representation of urban and power plant plumes. J. Geophys. Res. Atmos. 1990, 95, 5731–5748. [Google Scholar] [CrossRef]
- Shen, Y.; Meng, H.; Yao, X.; Peng, Z.; Sun, Y.; Zhang, J.; Gao, Y.; Feng, L.; Liu, X.; Gao, H. Does Ambient Secondary Conversion or the Prolonged Fast Conversion in Combustion Plumes Cause Severe Pm2.5 Air Pollution in China? Atmosphere 2022, 13, 673. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Zeng, H. Multi-objective optimal dispatch strategy for power systems with Spatio-temporal distribution of air pollutants. Sustain. Cities Soc. 2023, 98, 104801. [Google Scholar] [CrossRef]
- Kim, E.; Kim, B.U.; Kang, Y.H.; Kim, H.C.; Kim, S. Role of vertical advection and diffusion in long-range PM2.5 transport in Northeast Asia. Environ. Pollut. 2023, 320, 120997. [Google Scholar] [CrossRef]
- Seaman, N.L. Meteorological modeling for air-quality assessments. Atmos. Environ. 2000, 34, 2231–2259. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, T.; Tang, G.; Bai, Y.; Kong, S.; Zhou, Y.; Hu, J.; Tan, C.; Shu, Z.; Xu, J.; et al. Vertical changes of PM2.5 driven by meteorology in the atmospheric boundary layer during a heavy air pollution event in central China. Sci. Total Environ. 2023, 858, 159830. [Google Scholar] [CrossRef]
- Huszar, P.; Karlicky, J.; Doubalova, J.; Sindelarova, K.; Novakova, T.; Belda, M.; Halenka, T.; Žák, M.; Pisoft, P. Urban canopy meteorological forcing and its impact on ozone and PM2.5: Role of vertical turbulent transpot. Atmos. Chem. Phys. 2020, 20, 1977–2016. [Google Scholar] [CrossRef]
- Li, X.; Rappenglueck, B. A study of model nighttime ozone bias in air quality modeling. Atmos. Environ. 2018, 195, 210–228. [Google Scholar] [CrossRef]
- Castellanos, P.; Marufu, L.T.; Doddridge, B.G.; Taubman, B.F.; Schwab, J.J.; Hains, J.C.; Ehrman, S.H.; Dickerson, R.R. Ozone, oxides of nitrogen, and carbon monoxide during pollution events over the eastern United States: An evaluation of emissions and vertical mixing. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Jin, L.; Brown, N.J.; Harley, R.A.; Bao, J.-W.; Michelson, S.A.; Wilczak, J.M. Seasonal versus episodic performance evaluation for an Eulerian photochemical air quality model. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Byun, D.W.; Kim, S.-T.; Kim, S.-B. Evaluation of air quality models for the simulation of high ozone episode in the Houston metropolitan area. Atmos. Environ. 2007, 41, 837–853. [Google Scholar] [CrossRef]
- Makar, P.A.; Nissen, R.; Teakles, A.; Zhang, J.; Moran, M.D.; Yau, H.; diCenzo, C. Turbulent transport, emissions and the role of compensating errors in chemical transport models. Geosci. Model Dev. 2014, 7, 1001–1024. [Google Scholar] [CrossRef]
- Shimadera, H.; Hayami, H.; Chatani, S.; Morikawa, T.; Morino, Y.; Mori, Y.; Yamaji, K.; Nakatsuka, S.; Ohara, T. Urban Air Quality Model Inter-Comparison Study (UMICS) for Improvement of PM2.5 Simulation in Greater Tokyo Area of Japan. Asian J. Atmspheric. Environ. 2018, 12, 139–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Pun, B.; Seigneur, C. A comprehensive performance evaluation of MM5-CMAQ for the summer 1999 southern oxidants study episode, Part III: Diagnostic and mechanistic evaluations. Atmos. Environ. 2006, 40, 4856–4873. [Google Scholar] [CrossRef]
- Lee, P.; Tang, Y.; Kang, D.; McQueen, J.; Tsidulko, M.; Huang, H.; Lu, S.; Hart, M.; Lin, H.-M.; Yu, S.; et al. Impact of consistent boundary layer mixing approaches between NAM and CMAQ. Environ. Fluid Mech. 2009, 9, 23–42. [Google Scholar] [CrossRef]
- Kim, B.U.; Kim, H.C.; Kim, S. Effects of vertical turbulent diffusivity on regional PM2.5 and O3 source contributions. Atmos. Environ. 2021, 245, 118026. [Google Scholar] [CrossRef]
- Choi, J.; Park, R.J.; Lee, H.M.; Lee, S.; Jo, D.S.; Jeong, J.I.; Daven, K.H.; Woo, J.-H.; Ban, S.-J.; Lee, M.-D.; et al. Impacts of local vs. trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign. Atmos. Environ. 2019, 203, 196–205. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, E.; Bae, C.; Cho, J.H.; Kim, B.U.; Kim, S. Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: Seasonal variation and sensitivity to meteorology and emissions inventory. Atmos. Chem. Phys. 2017, 17, 10315–10332. [Google Scholar] [CrossRef]
- Woo, J.-H.; Kim, Y.; Kim, J.; Park, M.; Jang, Y.; Kim, J.; Bu, C.; Lee, Y.; Park, R.; Oak, Y.; et al. KORUS emissions: A comprehensive Asian emissions information in support of the NASA/NIER KORUS-AQ mission. Elem. Sci. Anthr. 2021, in press. [Google Scholar]
- Choi, S.W.; Ki, T.; Lee, H.K.; Kim, H.C.; Han, J.; Lee, K.B.; Lim, E.-H.; Shin, S.-H.; Jin, H.-A.; Cho, E.; et al. Analysis of the National Air Pollutant Emission Inventory (CAPSS 2016) and the Major Cause of Change in Republic of Korea. Asian J. Atmos. Environ. (AJAE) 2020, 14, 422–445. [Google Scholar] [CrossRef]
- Byun, D.W.; Dennis, R. Design artifacts in Eulerian air quality models: Evaluation of the effects of layer thickness and vertical profile correction on surface ozone concentrations. Atmos. Environ. 1995, 29, 105–126. [Google Scholar] [CrossRef]
- Lee, S.; Ho, C.-H.; Choi, Y.-S. High-PM10 concentration episodes in Seoul, Korea: Background sources and related meteorological conditions. Atmos. Environ. 2011, 45, 7240–7247. [Google Scholar] [CrossRef]
- Bae, C.; Kim, B.U.; Kim, H.C.; Yoo, C.; Kim, S. Long-range transport influence on key chemical components of PM2.5 in the Seoul metropolitan area, South Korea, during the years 2012–2016. Atmosphere 2019, 11, 48. [Google Scholar] [CrossRef]
- Jeong, U.; Lee, H.; Kim, J.; Kim, W.; Hong, H.; Song, C.K. Determination of the inter-annual and spatial characteristics of the contribution of long-range transport to SO2 levels in Seoul between 2001 and 2010 based on conditional potential source contribution function (CPSCF). Atmos. Environ. 2013, 70, 307–317. [Google Scholar] [CrossRef]
- Kim, D.; Choi, Y.; Jeon, W.; Mun, J.; Park, J.; Kim, C.-H.; Yoo, J.-W. Quantitative analysis of sulfate formation from crop burning in Northeast China: Unveiling the primary processes and transboundary transport to South Korea. Atmos. Res. 2024, 302, 107303. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Yao, F. Source-receptor relationship of transboundary particulate matter pollution between China, South Korea and Japan: Approaches, current understanding and limitations. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3896–3920. [Google Scholar] [CrossRef]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef]
- Hurley, P.J.; Blockley, A.; Rayner, K. Verification of a prognostic meteorological and air pollution model for year-long predictions in the Kwinana industrial region of Western Australia. Atmos. Environ. 2001, 35, 1871–1880. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
D1 | D2 | ||
---|---|---|---|
WRF | Horizontal grid | 180 × 142 | 78 × 93 |
Horizontal resolution | 27 km | 9 km | |
Geogrid resolution | USGS 30s | ||
Land use/Land cover | USGS 24 | ||
Vertical layers | 30 layers | ||
Microphysics | WRF Single-Moment 3-class simple ice | ||
Radiation (long/short wave) | RRTM/Goddard | ||
Land surface | Noah | ||
Cumulus | Kain-Fritsch | ||
Boundary layer | YSU | ||
CMAQ | Horizontal grid | 174 × 128 | 67 × 82 |
Horizontal resolution | 27 km | 9 km | |
Vertical layers | 15 layers | ||
Chemical mechanism | SAPRC99 | ||
Aerosol module | AERO5 | ||
Horizontal/Vertical advection | YAMO/YAMO | ||
Horizontal/Vertical diffusion | Multiscale/ACM2 |
Obs | Average | NMB | R | IOA | |||||
---|---|---|---|---|---|---|---|---|---|
B0.01 | BNew | B0.01 | BNew | B0.01 | BNew | B0.01 | BNew | ||
SKOR | 24.1 | 22.2 | 23.2 | −8.0 | −4.0 | 0.76 | 0.77 | 0.86 | 0.87 |
SMA | 28.0 | 27.0 | 28.2 | −3.6 | 0.7 | 0.79 | 0.78 | 0.88 | 0.88 |
YS | 26.5 | 14.7 | 16.8 | −43.8 | −35.9 | 0.52 | 0.53 | 0.65 | 0.69 |
China | 54.0 | 79.6 | 56.0 | 45.2 | 2.1 | 0.58 | 0.78 | 0.56 | 0.88 |
NE | 44.3 | 53.1 | 35.2 | 16.1 | −22.3 | 0.63 | 0.82 | 0.75 | 0.83 |
NC | 60.7 | 94.7 | 61.8 | 51.4 | −0.6 | 0.44 | 0.65 | 0.55 | 0.80 |
SC | 66.6 | 92.3 | 67.6 | 35.8 | −14.2 | 0.62 | 0.79 | 0.69 | 0.88 |
SE | 46.3 | 75.3 | 55.2 | 63.9 | 19.6 | 0.59 | 0.80 | 0.54 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-J.; Kim, T.-H.; Choi, J.-Y.; Lee, J.-b.; Kim, R.-H.; Son, J.-S.; Lee, D. The Impact of Vertical Eddy Diffusivity Changes in the CMAQ Model on PM2.5 Concentration Variations in Northeast Asia: Focusing on the Seoul Metropolitan Area. Atmosphere 2024, 15, 376. https://doi.org/10.3390/atmos15030376
Kim D-J, Kim T-H, Choi J-Y, Lee J-b, Kim R-H, Son J-S, Lee D. The Impact of Vertical Eddy Diffusivity Changes in the CMAQ Model on PM2.5 Concentration Variations in Northeast Asia: Focusing on the Seoul Metropolitan Area. Atmosphere. 2024; 15(3):376. https://doi.org/10.3390/atmos15030376
Chicago/Turabian StyleKim, Dong-Ju, Tae-Hee Kim, Jin-Young Choi, Jae-bum Lee, Rhok-Ho Kim, Jung-Seok Son, and Daegyun Lee. 2024. "The Impact of Vertical Eddy Diffusivity Changes in the CMAQ Model on PM2.5 Concentration Variations in Northeast Asia: Focusing on the Seoul Metropolitan Area" Atmosphere 15, no. 3: 376. https://doi.org/10.3390/atmos15030376
APA StyleKim, D. -J., Kim, T. -H., Choi, J. -Y., Lee, J. -b., Kim, R. -H., Son, J. -S., & Lee, D. (2024). The Impact of Vertical Eddy Diffusivity Changes in the CMAQ Model on PM2.5 Concentration Variations in Northeast Asia: Focusing on the Seoul Metropolitan Area. Atmosphere, 15(3), 376. https://doi.org/10.3390/atmos15030376