Near-Future Projection of Sea Surface Winds in Northwest Pacific Ocean Based on a CMIP6 Multi-Model Ensemble
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Methods
3. Results
3.1. Perfomance of CMIP6 Models in Historical Period (1985–2014)
3.2. CMIP6 MMM Wind Future Projection
3.3. Wind Changes under El Niño Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayashi, M.; Shiogama, H.; Emori, S.; Ogura, T.; Hirota, N. The Northwestern Pacific warming record in August 2020 occurred under anthropogenic forcing. Geophys. Res. Lett. 2021, 48, e2020GL090956. [Google Scholar] [CrossRef]
- Li, D.; Chen, Y.; Qi, J.; Zhu, Y.; Lu, C.; Yin, B. Attribution of the July 2021 record-breaking Northwest Pacific marine heatwave to global warming, atmospheric circulation, and ENSO. Bull. Am. Meteorol. Soc. 2023, 104, E291–E297. [Google Scholar] [CrossRef]
- Lohman, K.; Putrasahan, D.; von Storch, J.-S.; Gutjahr, O.; Jungclaus, J.H.; Haak, H. Response of northern north Atlantic and Atlantic meridional overturning circulation to reduced and enhanced wind stress forcing. J. Geophys. Res. Oceans 2021, 126, JC017902. [Google Scholar] [CrossRef]
- Lim, D.-U.; Suh, K.-D.; Mori, N. Regional projection of future extreme wave heights around Korean peninsula. Ocean. Sci. J. 2013, 48, 439–453. [Google Scholar] [CrossRef]
- Semedo, A.; Weisse, R.; Behrens, A.; Sterl, A.; Bengstsson, L.; Gunther, H. Projection of global wave climate change toward the end of twenty-first century. J. Clim. 2013, 26, 8269–8288. [Google Scholar] [CrossRef]
- Heo, K.-Y.; Choi, J.-Y.; Jeong, S.-H.; Kwon, J.-I. Characteristics of high swell-like waves on east coast of Korea observed by direct measurements and reanalysis data sets. J. Coast. Res. 2020, 95, 1433–1437. [Google Scholar] [CrossRef]
- Oh, S.M.; Moon, I.-J. Typhoon and storm surge intensity changes in a warming climate around the Korean Peninsula. Nat. Hazards 2013, 66, 1405–1429. [Google Scholar] [CrossRef]
- Cardone, V.J.; Callahan, H.; Chen, H.; Cox, A.T.; Morrone, M.A.; Swail, V.R. Global distribution and risk to shipping of very extreme sea states (VESS). Int. J. Climatol. 2015, 35, 69–84. [Google Scholar] [CrossRef]
- Son, D.; Jun, K.; Kwon, J.-I.; Yoo, J.; Park, S.-H. Improvement of wave predictions in in marginal seas around Korea through correction of simulated sea winds. Appl. Ocean Res. 2023, 130, 103433. [Google Scholar] [CrossRef]
- Qi, H.; Shan, X.; Chen, D.; Zhu, C.; Zhu, Y. Droughts near the northern fringe of the East Asian Summer Monsoon in China during 1470–2003. Clim. Chang. 2012, 110, 373–383. [Google Scholar]
- Chen, W.; Wang, L.; Feng, J.; Wen, Z.; Ma, T.; Yang, X.; Wang, C. Recent progress in studies of the variabilities and mechanisms of the East Asian Monsoon in a Changing Climate. Adv. Atmos. Sci. 2019, 36, 887–901. [Google Scholar] [CrossRef]
- Ha, K.-J.; Heo, K.-Y.; Lee, S.-S.; Yun, K.-S.; Jhun, J.-G. Variability in the East Asian monsoons: A review. Meteorol. Appl. 2012, 19, 200–215. [Google Scholar] [CrossRef]
- Ren, H.-L.; Huang, Y.; Chadwick, R.; Deng, Y. Decomposing East-Asian winter temperature and monsoonal circulation changes using timeslice experiments. Clim. Dyn. 2020, 54, 2297–2315. [Google Scholar] [CrossRef]
- Huang, R.H.; Zhou, L.T.; Chen, W. The progresses of recent studies on the variabilities of the East Asian monsoon and their causes. Adv. Atmos. Sci. 2003, 20, 55–69. [Google Scholar] [CrossRef]
- Chen, W.; Wang, L.; Xue, Y.K.; Sun, S.F. Variabilities of the spring river runoff system in East China and their relations to precipitation and sea surface temperature. Int. J. Climatol. 2009, 29, 1381–1394. [Google Scholar] [CrossRef]
- Chang, C.P.; Wang, Z.; Hendon, H. The Asian winter monsoon. In The Asian Monsoon; Wang, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 89–127. [Google Scholar]
- Wu, Q.-Y.; Li, Q.-Q.; Ding, Y.-H.; Shen, X.-Y.; Zhao, M.-C.; Zhu, Y.-X. Asian summer monsoon responses to the change of land-sea thermodynamic contrast in a warming climate: CMIP6 projections. Adv. Clim. Chang. Res. 2022, 13, 205–217. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Badriana, M.R.; Lee, H.S. Statistical evaluation of monthly marine surface winds of CMIP6 GCMs in the western north Pacific. J. Jpn. Soc. Civ. Eng. 2019, 75, 1219–1224. [Google Scholar] [CrossRef]
- Oh, S.-G.; Kim, B.-G.; Cho, Y.-K.; Son, S.-W. Quantification of the performance of CMIP6 models for dynamic downscaling in the north Pacific and northwest Pacific oceans. Asia Pac. J. Atmos. Sci. 2023, 59, 367–383. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.G.; Fu, X.H. Pacific-East Asian teleconnection: How does ENSO affect east Asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Lee, S.-H.; Seo, K.-H.; Kwon, M. Combined effects of El Niño and the Pacific Decadal Oscillation on summertime circulation over East Asia. Asia Pac. J. Atmos. Sci. 2019, 55, 91–99. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Ali, Z.; Hamed, M.M.; Muhammad, M.K.I.; Iqbal, Z.; Shahid, S. Performance evaluation of CMIP6 GCMs for the projections of precipitation extremes in Pakistan. Clim. Dyn. 2023, 61, 4717–4732. [Google Scholar] [CrossRef]
- Usta, D.F.D.; Parra, R.R.T. Projected wind changes in the Caribbean Sea based on CMIP6 models. Clim. Dyn. 2023, 60, 3713–3727. [Google Scholar] [CrossRef]
- Chen, C.-A.; Hsu, H.-H.; Liang, H.-C. Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the western north Pacific and east Asia. Weather Clim. Extrem. 2021, 31, 100303. [Google Scholar] [CrossRef]
- Kim, K.-H.; Shim, P.-S.; Shin, S. An alternative bilinear interpolation method between spherical grids. Atmosphere 2019, 10, 123. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Ito, R.; Shiogama, H.; Nakaegawa, T.; Takayabu, I. Uncertainties in climate change projection covered by the ISIMIP and CORDEX model subsets from CMIP5. Geosci. Model Dev. 2020, 13, 859–872. [Google Scholar] [CrossRef]
- Krishnan, A.; Bhaskaran, P.K.; Kumar, P. CMIP5 model performance of significant wave heights over the Indian Ocean using COWCLIP datasets. Theor. Appl. Climatol. 2021, 145, 377–392. [Google Scholar] [CrossRef]
- Hemer, M.A.; Trenham, C.E. Evaluation of a CMIP5 derived dynamical global wind wave climate model ensemble. Ocean Model. 2016, 103, 190–203. [Google Scholar] [CrossRef]
- Watterson, I.G. Improved simulation of regional climate by global models with higher simulation: Skill scores correlated with grid length. J. Clim. 2015, 28, 5985–6000. [Google Scholar] [CrossRef]
- Gou, J.; Miao, C.; Duan, Q.; Tang, Q.; Di, Z.; Liao, W.; Wu, J.; Zhou, R. Sensitivity analysis-based automatic parameter calibration of the VIC model for streamflow simulations over China. Water Resour. Res. 2020, 56, e2019WR025968. [Google Scholar] [CrossRef]
- Hardiman, S.C.; Dunstone, N.J.; Scaife, A.A.; Bett, P.E.; Li, C.; Lu, B.; Ren, H.-L.; Smith, D.M.; Stephan, C.C. The asymmetric response of Yangtze river basin summer rainfall to El Niño. Environ. Res. Lett. 2018, 13, 024015. [Google Scholar] [CrossRef]
- Kumar, P.; Min, S.-K.; Weller, E.; Lee, H.; Wang, X.L. Influence of climate variability on extreme ocean surface wave heights assessed from ERA-interim and ERA-20C. J. Clim. 2016, 29, 4031–4046. [Google Scholar] [CrossRef]
- Lei, X.; Xu, C.; Liu, F.; Song, L.; Cao, L.; Suo, N. Evaluation of CMIP6 models and multimodel ensemble for extreme precipitation over arid Central Asia. Remote Sens. 2023, 15, 2736. [Google Scholar] [CrossRef]
- Wu, J.; Shi, Y.; Xu, Y. Evaluation and projection of surface wind speed over China based on CMIP6 GCMs. J. Geophys. Res. Atmos. 2020, 125, e2020JD033611. [Google Scholar] [CrossRef]
- Zhao, L.; Jin, S.; Liu, X.; Wang, B.; Song, Z.; Hu, J.; Guo, Y. Assessment of CMIP6 model performance for wind speed in China. Front. Clim. 2021, 3, 735988. [Google Scholar] [CrossRef]
- Huang, R.H.; Chen, J.L.; Wang, L.; Lin, Z.D. Characteristics, processes and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci. 2012, 29, 910–942. [Google Scholar] [CrossRef]
- Lee, H.S.; Komaguchi, T.; Yamamoto, A.; Hara, M. Wintertime extreme storm waves in the East Sea: Estimation of extreme storm waves and wave-structure interaction study in the Fushiki Port, Toyama Bay. J. Korean Soc. Coast. Ocean Eng. 2013, 25, 335–347. [Google Scholar] [CrossRef]
- Ling, S.; Lu, R. Tropical cyclones over the western north Pacific strengthen the East Asia-Pacific pattern during summer. Adv. Atmos. Sci. 2022, 39, 249–259. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Q. Pacific-East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Clim. 2002, 15, 3252–3265. [Google Scholar] [CrossRef]
- Chien, H.; Cheng, H.-Y.; Chiou, M.-D. Wave climate variability of Taiwan waters. J. Oceanogr. 2014, 70, 133–152. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, C.; Liu, J.; Wei, Y.; Wu, J.; Luo, J. Underestimated relationship between westerly wind bursts and ENSO in CMIP6 models. Atmos. Ocean. Sci. Lett. 2023, 16, 100336. [Google Scholar] [CrossRef]
- Emmanuel, K.A. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Liu, H.; Chen, X. Eastern equatorial Pacific SST seasonal cycle in global climate models: From CMIP5 to CMIP6. Acta Oceanol. Sin. 2020, 39, 50–60. [Google Scholar] [CrossRef]
No | Model | Institution | Resolution |
---|---|---|---|
Spatial (Longitude° × Latitude°) | |||
1 | ACCESS-CM2 | CSIRO | 1.9 × 1.3 |
2 | AWI-CM-1-1-MR | AWI | 0.9 × 0.9 |
3 | BCC-CSM2-MR | BCC | 1.1 × 1.1 |
4 | CMCC-CM2-SR5 | CMCC | 1.3 × 1.8 |
5 | EC-EARTH3 | EC-Earth Consortium | 0.7 × 0.7 |
6 | IPSL-CM6A-LR | IPSL | 2.5 × 1.3 |
7 | MIROC6 | JAMSTEC | 0.7 × 0.7 |
8 | MPI-ESM1-2-HR | MPI | 0.9 × 0.9 |
9 | MRI-ESM2-0 | MRI | 1.9 × 0.9 |
10 | NESM3 | NUIST | 1.9 × 1.9 |
No | Model | SS | R_SS | MS | R_MS | NSE | R_NSE | IA | R_IA | R_tot | Rank Order |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS-CM2 | 0.7117 | 9 | 632 | 3 | 0.703 | 2 | 0.912 | 3 | 17 | MMM |
2 | AWI-CM-1-1-MR | 0.7277 | 5 | 568 | 7 | 0.474 | 7 | 0.877 | 8 | 27 | IPSL-CM6A-LR |
3 | BCC-CSM2-MR | 0.6066 | 11 | 370 | 11 | −0.250 | 11 | 0.739 | 11 | 44 | MIROC6 |
4 | CMCC-CM2-SR5 | 0.7166 | 8 | 572 | 6 | 0.388 | 8 | 0.879 | 7 | 29 | ACCESS-CM2 |
5 | EC-EARTH3 | 0.7278 | 4 | 541 | 9 | 0.344 | 9 | 0.862 | 9 | 31 | MPI-ESM1-2-HR |
6 | IPSL-CM6A-LR | 0.7416 | 2 | 627 | 4 | 0.604 | 4 | 0.910 | 4 | 14 | NESM3 |
7 | MIROC6 | 0.7179 | 7 | 635 | 2 | 0.626 | 3 | 0.914 | 2 | 14 | AWI-CM-1-1-MR |
8 | MPI-ESM1-2-HR | 0.7301 | 3 | 557 | 8 | 0.496 | 6 | 0.883 | 6 | 23 | CMCC-CM2-SR5 |
9 | MRI-ESM-2-0 | 0.7270 | 6 | 519 | 10 | 0.249 | 10 | 0.846 | 10 | 36 | EC-EARTH3 |
10 | NESM3 | 0.6891 | 10 | 575 | 5 | 0.539 | 5 | 0.883 | 5 | 25 | MRI-ESM-2-0 |
11 | MMM | 0.8349 | 1 | 731 | 1 | 0.800 | 1 | 0.954 | 1 | 4 | BCC-CSM2-MR |
Period | Wind Direction (In Coming-from Degrees) | |||
---|---|---|---|---|
Annual Mean | Winter | Summer | ||
Historical | 259.48 | 297.65 | 118.13 | |
Future | SSP2-4.5 | 255.18 | 297.06 | 116.30 |
SSP5-8.5 | 254.62 | 297.40 | 114.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayhaqi, A.; Yoo, J.; Jang, C.J.; Kwon, M.; Kang, H.-W. Near-Future Projection of Sea Surface Winds in Northwest Pacific Ocean Based on a CMIP6 Multi-Model Ensemble. Atmosphere 2024, 15, 386. https://doi.org/10.3390/atmos15030386
Bayhaqi A, Yoo J, Jang CJ, Kwon M, Kang H-W. Near-Future Projection of Sea Surface Winds in Northwest Pacific Ocean Based on a CMIP6 Multi-Model Ensemble. Atmosphere. 2024; 15(3):386. https://doi.org/10.3390/atmos15030386
Chicago/Turabian StyleBayhaqi, Ahmad, Jeseon Yoo, Chan Joo Jang, Minho Kwon, and Hyoun-Woo Kang. 2024. "Near-Future Projection of Sea Surface Winds in Northwest Pacific Ocean Based on a CMIP6 Multi-Model Ensemble" Atmosphere 15, no. 3: 386. https://doi.org/10.3390/atmos15030386
APA StyleBayhaqi, A., Yoo, J., Jang, C. J., Kwon, M., & Kang, H. -W. (2024). Near-Future Projection of Sea Surface Winds in Northwest Pacific Ocean Based on a CMIP6 Multi-Model Ensemble. Atmosphere, 15(3), 386. https://doi.org/10.3390/atmos15030386