An Update of the NeQuick-Corr Topside Ionosphere Modeling Based on New Datasets
Abstract
:1. Introduction
2. Data and Methods
2.1. Swarm Observations
2.2. COSMIC/FORMOSAT-3 Observations
2.3. GRACE Observations
2.4. METOP Observations
2.5. TerraSAR-X Observations
2.6. The IRI UP Method
3. The NeQuick Ionospheric Topside Representation and the H0,corr Formulation
- Each calculated value of H0 is associated to a specific pair of values (foF2, hmF2);
- H0 values are two-dimensionally binned as a function of foF2 and hmF2, with a bin width of 0.25 MHz and 5 km, respectively, within the following ranges: foF2 ∈ [0, 16] MHz; hmF2 ∈ [150, 450] km;
- If the number of H0 values in the bin is greater than or equal to 10, the corresponding median is calculated; otherwise, the bin is considered statistically insignificant.
4. Results and Discussion
- The NeQuick original description (the one represented by Equations (1)−(6)), that until the IRI-2016 version was the default topside option of the IRI model;
- The NeQuick-corr topside description based on IRI UP modeled values and Swarm uncalibrated Ne measurements from 5 December 2013 to 31 December 2021, considering the value of g = 0.125 typically adopted in NeQuick;
- The NeQuick-corr topside description based on IRI UP modeled values and Swarm uncalibrated Ne measurements from 5 December 2013 to 31 December 2021, considering g = 0.15 as suggested by Singh et al. [46];
- The NeQuick-corr topside description based on IRI UP modeled values and Swarm calibrated Ne measurements according to Lomidze et al. [47] from 5 December 2013 to 31 December 2021, considering the value of g = 0.125 typically adopted in NeQuick;
- The NeQuick-corr topside description based on IRI UP modeled values and Swarm calibrated Ne measurements according to Lomidze et al. [47] from 5 December 2013 to 31 December 2021, considering g = 0.14.
5. Summary and Conclusions
- Even though the NeQuick-corr formulation is based on datasets recorded over the European region, its performance is deemed satisfactory for both low, middle, and high latitudes when considering the profile up to the GNSS satellites’ altitude. On the other hand, when considering the lowest topside section, from hmF2 to 600 km above hmF2, it was demonstrated that NeQuick-corr provides adequate performance at low and middle latitudes;
- The study highlighted that considering values of the parameter g other than 0.125 (usually adopted) is very effective in mitigating the vTEC underestimation made by the NeQuick model and significantly improves the NeQuick-corr performance, primarily in terms of accuracy;
- The best performance is obtained by the NeQuick-corr topside description corresponding to g = 0.15 and by the NeQuick-corr Lomidze topside description corresponding to g = 0.14;
- RMSE deviates significantly from 0. This fact suggests that the significance of parameter r, which controls the asymptotic behavior in the plasmaspheric domain, is crucial, and its modeling becomes a necessity for an accurate vTEC modeling;
- The performance of different NeQuick-corr options depends on solar activity, with the RMSE increasing as the solar activity increases. This feature is smoothed out when considering optimized values of g. This suggests that the g parameter is most likely dependent on the solar activity level. In fact, especially at middle latitudes, the application of the optimized g parameter is very effective for high but not for low solar activity years. On the other hand, Pignalberi et al. [80] have recently highlighted this dependence.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rishbeth, H.; Garriott, O. Introduction to ionospheric physics. In International Geophysics Series; Academic Press: New York, NY, USA, 1969; Volume 14. [Google Scholar]
- Yizengaw, E.; Moldwin, M.B.; Galvan, D.; Iijima, B.A.; Komjathy, A.; Mannucci, A.J. Global plasmaspheric TEC and its relative contribution to GPS TEC. J. Atmos. Sol.-Terr. Phys. 2008, 70, 1541–1548. [Google Scholar] [CrossRef]
- Hoque, M.M.; Jakowski, N. Ionospheric propagation effects on GNSS signals and new correction approaches. In Global Navigation Satellite Systems; Jin, S., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 16; pp. 381–405. [Google Scholar] [CrossRef]
- Olivares-Pulido, G.; Hernández-Pajares, M.; Aragón-Àngel, A.; Garcia-Rigo, A. A linear scale height chapman model supported by GNSS occultation measurements. J. Geophys. Res. Space Phys. 2016, 121, 7932–7940. [Google Scholar] [CrossRef]
- Radicella, S.M.; Nava, B.; Coïsson, P. Ionospheric Models for GNSS Single Frequency Range Delay Corrections. Física Tierra 2008, 20, 27–39. [Google Scholar]
- dos Santos Prol, F.; Hernández-Pajares, M.; de Oliveira Camargo, P.; de Assis Honorato Muella, M.T. Spatial and temporal features of the topside ionospheric electron density by a new model based on GPS radio occultation data. J. Geophys. Res. Space Phys. 2018, 123, 2104–2115. [Google Scholar] [CrossRef]
- dos Santos Prol, F.; Themens, D.R.; Hernández-Pajares, M.; de Oliveira Camargo, P.; de Assis Honorato Muella, M.T. Linear vary-chap topside electron density model with topside sounder and radio-occultation data. Surv. Geophys. 2019, 40, 277–293. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Okoh, D.; Bergeot, N.; Burešová, D.; Matamba, T.; Tshisaphungo, M.; Katamzi-Joseph, Z.; Pinat, E.; Chevalier, J.-M.; Seemala, G. Interhemispheric comparison of the ionosphere and plasmasphere total electron content using GPS, radio occultation and ionosonde observations. Adv. Space Res. 2021, 68, 2339–2353. [Google Scholar] [CrossRef]
- Park, J. Ratio between over satellite electron content and plasma density measured by Swarm: A proxy for topside scale height. J. Geophys. Res. Space Phys. 2022, 127, e2021JA030137. [Google Scholar] [CrossRef]
- Ren, X.; Li, Y.; Mei, D.; Zhu, W.; Zhang, X. Improving topside ionospheric empirical model using FORMOSAT-7/COSMIC-2 data. J. Geodesy 2023, 97, 30. [Google Scholar] [CrossRef]
- Kuverova, V.V.; Adamson, S.O.; Berlin, A.A.; Bychkov, V.L.; Dmitriev, A.V.; Dyakov, Y.A.; Eppelbaum, L.V.; Golubkov, G.V.; Lushnikov, A.A.; Manzhelii, M.I.; et al. Chemical physics of D and E layers of the ionosphere. Adv. Space Res. 2019, 64, 1876–1886. [Google Scholar] [CrossRef]
- Hunsucker, R.D. Radio Techniques for Probing the Terrestrial Ionosphere; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar] [CrossRef]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Bilitza, D.; Reinisch, B.W.; Radicella, S.M.; Pulinets, S.; Gulyaeva, T.; Triskova, L. Improvements of the International Reference Ionosphere model for the topside electron density profile. Radio Sci. 2006, 41, RS5S15. [Google Scholar] [CrossRef]
- Coïsson, P.; Radicella, S.M. Ionospheric topside models compared with experimental electron density profiles. Ann. Geophys. 2005, 48, 497–503. [Google Scholar] [CrossRef]
- Coïsson, P.; Radicella, S.M.; Leitinger, R.; Nava, B. Topside electron density in IRI and NeQuick: Features and limitations. Adv. Space Res. 2006, 37, 937–942. [Google Scholar] [CrossRef]
- Lühr, H.; Xiong, C. The IRI 2007 model overestimates electron density during the 23/24 solar minimum. Geophys. Res. Lett. 2010, 37, L23101. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Tozzi, R.; De Michelis, P.; Coco, I. Comparison between IRI and preliminar Swarm Langmuir probe measurements during the St. Patrick storm period. Earth Planets Space 2016, 68, 93. [Google Scholar] [CrossRef]
- Leitinger, R.; Nava, B.; Hochegger, G.; Radicella, S. Ionospheric profilers using data grids. Phys. Chem. Earth Part C Solar Terr. Plan. Sci. 2001, 26, 293–301. [Google Scholar] [CrossRef]
- Leitinger, R.; Radicella, S.; Hochegger, G.; Nava, B. Diffusive equilibrium models for the height region above the F2 peak. Adv. Space Res. 2002, 29, 809–814. [Google Scholar] [CrossRef]
- Nava, B.; Coïsson, P.; Radicella, S.M. A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol.-Terr. Phys. 2008, 70, 1856–1862. [Google Scholar] [CrossRef]
- Coïsson, P.; Nava, B.; Radicella, S.M. On the use of NeQuick topside option in IRI-2007. Adv. Space Res. 2009, 43, 1688–1693. [Google Scholar] [CrossRef]
- Radicella, S.M.; Leitinger, R. The evolution of the DGR approach to model electron density profiles. Adv. Space Res. 2001, 27, 35–40. [Google Scholar] [CrossRef]
- Chapman, S. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc. Phys. Soc. 1931, 43, 26–45. [Google Scholar] [CrossRef]
- Rawer, K. Synthesis of ionospheric electron density profiles with Epstein functions. Adv. Space Res. 1988, 8, 191–199. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Nava, B.; Coïsson, P. On the link between the topside ionospheric effective scale height and the plasma ambipolar diffusion, theory and preliminary results. Sci. Rep. 2020, 10, 17541. [Google Scholar] [CrossRef] [PubMed]
- Reinisch, B.W.; Nsumei, P.; Huang, X.; Bilitza, D. Modeling the F2 topside and plasmasphere for IRI using IMAGE/RPI and ISIS data. Adv. Space Res. 2007, 39, 731–738. [Google Scholar] [CrossRef]
- Nsumei, P.; Reinisch, B.W.; Huang, X.; Bilitza, D. New Vary-Chap profile of the topside ionosphere electron density distribution for use with the IRI model and the GIRO real time data. Radio Sci. 2012, 47, RS0L16. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Garcia-Fernàndez, M.; Rius, A.; Notarpietro, R.; von Engeln, A.; Olivares-Pulido, G.; Aragón-Àngel, À.; García-Rigo, A. Electron density extrapolation above F2 peak by the linear Vary-Chap model supporting new Global Navigation Satellite Systems-LEO occultation missions. J. Geophys. Res. Space Phys. 2017, 122, 9003–9014. [Google Scholar] [CrossRef]
- Prol, F.d.S.; Smirnov, A.G.; Hoque, M.M.; Shprits, Y.Y. Combined model of topside ionosphere and plasmasphere derived from radio-occultation and Van Allen Probes data. Sci. Rep. 2022, 12, 9732. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, A.; Shprits, Y.; Prol, F.; Lühr, H.; Berrendorf, M.; Zhelavskaya, I.; Xiong, C. A novel neural network model of Earth’s topside ionosphere. Sci. Rep. 2023, 13, 1303. [Google Scholar] [CrossRef] [PubMed]
- Pignalberi, A.; Pezzopane, M.; Themens, D.R.; Haralambous, H.; Nava, B.; Coïsson, P. On the analytical description of the topside ionosphere by NeQuick: Modeling the scale height through COSMIC/FORMOSAT-3 selected data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 1867–1878. [Google Scholar] [CrossRef]
- Themens, D.R.; Jayachandran, P.T.; Bilitza, D.; Erickson, P.J.; Häggström, I.; Lyashenko, M.V.; Reid, B.; Varney, R.H.; Pustovalova, L. Topside electron density representations for middle and high latitudes: A topside parameterization for E-CHAIM based on the NeQuick. J. Geophys. Res. Space Phys. 2018, 123, 1603–1617. [Google Scholar] [CrossRef]
- Bauer, S.J. Diffusive equilibrium in the topside ionosphere. Proc. IEEE 1969, 57, 1114–1118. [Google Scholar] [CrossRef]
- Pezzopane, M.; Pignalberi, A. The ESA Swarm mission to help ionospheric modeling: A new NeQuick topside formulation for mid-latitude regions. Sci. Rep. 2019, 9, 12253. [Google Scholar] [CrossRef] [PubMed]
- Pignalberi, A.; Pezzopane, M.; Rizzi, R.; Galkin, I. Effective solar indices for ionospheric modeling: A review and a proposal for a real-time regional IRI. Surv. Geophys. 2018, 39, 125–167. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pietrella, M.; Pezzopane, M.; Rizzi, R. Improvements and validation of the IRI UP method under moderate, strong, and severe geomagnetic storms. Earth Planets Space 2018, 70, 180. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Hulot, G. Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 2006, 58, 351–358. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Knudsen, D.; Haagmans, R. Swarm—An Earth Observation Mission investigating Geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Leitinger, R.; Zhang, M.L.; Radicella, S.M. An improved bottomside for the ionospheric electron density model NeQuick. Ann. Geophys. 2005, 48, 525–534. [Google Scholar] [CrossRef]
- Radicella, S.M.; Alazo-Cuartas, K.; Migoya-Orué, Y.; Kashcheyev, A. Thickness parameters in the empirical modeling of bottomside electron density profiles. Adv. Space Res. 2021, 68, 2069–2075. [Google Scholar] [CrossRef]
- Themens, D.R.; Jayachandran, P.T.; Varney, R.H. Examining the use of the NeQuick bottomside and topside parameterizations at high latitudes. Adv. Space Res. 2018, 61, 287–294. [Google Scholar] [CrossRef]
- Pezzopane, M.; Pignalberi, A.; Nava, B. On the low-latitude NeQuick topside ionosphere mismodelling: The role of parameters H0, g, and r. Adv. Space Res. 2023, 72, 1224–1236. [Google Scholar] [CrossRef]
- Singh, A.K.; Haralambous, H.; Oikonomou, C.; Leontiou, T. A topside investigation over a mid-latitude digisonde station in Cyprus. Adv. Space Res. 2021, 67, 739–748. [Google Scholar] [CrossRef]
- dos Santos Klipp, T.; Petry, A.; de Souza, J.R.; de Paula, E.R.; Falcão, G.S.; de Campos Velho, H.F. Ionosonde total electron content evaluation using International Global Navigation Satellite System Service data. Ann. Geophys. 2020, 38, 347–357. [Google Scholar] [CrossRef]
- Singh, A.K.; Haralambous, H.; Oikonomou, C. Validation and improvement of NeQuick topside ionospheric formulation using COSMIC/FORMOSAT-3 data. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028720. [Google Scholar] [CrossRef]
- Lomidze, L.; Knudsen, D.J.; Burchill, J.; Kouznetsov, A.; Buchert, S.C. Calibration and validation of Swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Sci. 2018, 53, 15–36. [Google Scholar] [CrossRef]
- Catapano, F.; Buchert, S.; Qamili, E.; Nilsson, T.; Bouffard, J.; Siemes, C.; Coco, I.; D’Amicis, R.; Tøffner-Clausen, L.; Trenchi, L.; et al. Swarm Langmuir probes’ data quality validation and future improvements. Geosci. Instrum. Method. Data Syst. 2022, 11, 149–162. [Google Scholar] [CrossRef]
- Knudsen, D.J.; Burchill, J.K.; Buchert, S.C.; Eriksson, A.I.; Gill, R.; Wahlund, J.; Åhlen, L.; Smith, M.; Moffat, B. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys. Res. Space Phys. 2017, 122, 2655–2673. [Google Scholar] [CrossRef]
- Swarm L1b Product Definition. Available online: https://earth.esa.int/eogateway/documents/20142/37627/swarm-level-1b-product-definition-specification.pdf (accessed on 31 January 2024).
- Van den IJssel, J.; Forte, B.; Montenbruck, O. Impact of Swarm GPS receiver updates on POD performance. Earth Planets Space 2016, 68, 85. [Google Scholar] [CrossRef]
- Swarm L2 TEC Product Description. Available online: https://earth.esa.int/eogateway/documents/20142/37627/swarm-level-2-tec-product-description.pdf/8fe7fa04-6b4f-86a7-5e4c-99bb280ccc7e (accessed on 31 January 2024).
- Anthes, R.; Bernhardt, P.A.; Chen, Y.; Cucurull, L.; Dymond, K.F.; Ector, D.; Healy, S.B.; Ho, S.-P.; Hunt, D.C.; Kuo, Y.-H.; et al. The COSMIC/FORMOSAT-3 mission: Early results. Bull. Am. Meteorol. Soc. 2008, 89, 313–333. [Google Scholar] [CrossRef]
- UCAR/NCAR—COSMIC. UCAR COSMIC Program. COSMIC-1 Data Products [IonPrf and podTec]. 2022. Available online: https://www.cosmic.ucar.edu/what-we-do/cosmic-1/data (accessed on 1 April 2024). [CrossRef]
- Foelsche, U.; Kirchengast, G. A simple ‘geometric’ mapping function for the hydrostatic delay at radio frequencies and assessment of its performance. Geophys. Res. Lett. 2002, 29, 1473. [Google Scholar] [CrossRef]
- Zhong, J.; Lei, J.; Dou, X.; Yue, X. Assessment of vertical TEC mapping functions for space-based GNSS observations. GPS Sol. 2016, 20, 353–362. [Google Scholar] [CrossRef]
- Prol, F.S.; Hoque, M.M. A Tomographic Method for the Reconstruction of the Plasmasphere Based on COSMIC/FORMOSAT-3 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2197–2208. [Google Scholar] [CrossRef]
- von Engeln, A.; Andres, Y.; Marquardt, C.; Sancho, F. GRAS radio occultation on-board of Metop. Adv. Space Res. 2011, 47, 336–347. [Google Scholar] [CrossRef]
- Prol, F.S.; Hoque, M.M.; Hernández-Pajares, M.; Yuan, L.; Olivares-Pulido, G.; von Engeln, A.; Marquardt, C.; Notarpietro, R. Study of Ionospheric Bending Angle and Scintillation Profiles Derived by GNSS Radio-Occultation with MetOp-A Satellite. Remote Sens. 2023, 15, 1663. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I. How can GOCE and TerraSAR-X contribute to the topside ionosphere and plasmasphere research? Space Weather 2015, 13, 271–285. [Google Scholar] [CrossRef]
- Liu, R.Y.; Smith, P.A.; King, J.W. A new solar index which leads to improved foF2 predictions using the CCIR Atlas. Telecommun. J. 1983, 50, 408–414. [Google Scholar]
- Kitanidis, P.K. Introduction to Geostatistics: Application to Hydrogeology; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Reinisch, B.W.; Galkin, I.A. Global Ionospheric Radio Observatory (GIRO). Earth Planets Space 2011, 63, 377–381. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Huang, X. Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottomside ionograms. Radio Sci. 1983, 18, 477–492. [Google Scholar] [CrossRef]
- Galkin, I.A.; Reinisch, B.W. The New ARTIST 5 for All Digisondes. Ionosonde Network Advisory Group Bulletin 69. 2008. Available online: https://www.sws.bom.gov.au/IPSHosted/INAG/web-69/2008/artist5-inag.pdf (accessed on 1 April 2024).
- Scotto, C.; Pezzopane, M. Removing multiple reflections from the F2 layer to improve Autoscala performance. J. Atmos. Sol.-Terr. Phys. 2008, 70, 1929–1934. [Google Scholar] [CrossRef]
- Pezzopane, M.; Scotto, C. Highlighting the F2 trace on an ionogram to improve Autoscala performance. Comp. Geosci. 2010, 36, 1168–1177. [Google Scholar] [CrossRef]
- Bibl, K.; Reinisch, B.W. The universal digital ionosonde. Radio Sci. 1978, 13, 519–530. [Google Scholar] [CrossRef]
- Zuccheretti, E.; Tutone, G.; Sciacca, U.; Bianchi, C.; Arokiasamy, B.J. The new AIS-INGV digital ionosonde. Ann. Geophys. 2003, 46, 647–659. [Google Scholar] [CrossRef]
- Pezzopane, M.; Scotto, C.; Tomasik, Ł.; Krasheninnikov, I. Autoscala: An aid for different ionosondes. Acta Geophys. 2009, 58, 513–526. [Google Scholar] [CrossRef]
- Galkin, I.A.; Reinisch, B.W.; Huang, X.; Khmyrov, G.M. Confidence score of ARTIST-5 ionogram autoscaling. In Ionosonde Network Advisory Group (INAG) Bulletin, 73rd ed.; International Radio Science Union: Ghent, Belgium, 2013; Available online: http://www.ursi.org/files/CommissionWebsites/INAG/web-73/confidence_score.pdf (accessed on 31 January 2024).
- Themens, D.; Reid, B.; Elvidge, S. ARTIST ionogram autoscaling confidence scores: Best practices. URSI Radio Sci. Lett. 2022, 4, 1–5. [Google Scholar] [CrossRef]
- Mosert de Gonzales, M.; Radicella, S.M. On a characteristic point at the base of F2 layer in the ionosphere. Adv. Space Res. 1990, 10, 17–25. [Google Scholar] [CrossRef]
- Huber, P.J.; Ronchetti, E.M. Robust Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Pignalberi, A.; Pezzopane, M.; Rizzi, R. Modeling the lower part of the topside ionospheric vertical electron density profile over the European region by means of Swarm satellites data and IRI UP method. Space Weather 2018, 16, 304–320. [Google Scholar] [CrossRef]
- Kashcheyev, A.; Nava, B. Validation of NeQuick 2 model topside ionosphere and plasmasphere electron content using COSMIC POD TEC. J. Geophys. Res. Space Phys. 2019, 124, 9525–9536. [Google Scholar] [CrossRef]
- Laundal, K.M.; Richmond, A.D. Magnetic Coordinate Systems. Space Sci. Rev. 2017, 206, 27. [Google Scholar] [CrossRef]
- Rush, C.M.; Fox, M.; Bilitza, D.; Davies, K.; McNamara, L.; Stewart, F.G.; PoKempner, M. Ionospheric mapping-an update of foF2 coefficients. Telecommun. J. 1989, 56, 179–182. [Google Scholar]
- Shubin, V.N. Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground based digisonde observations. Adv. Space Res. 2015, 56, 916–928. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Nava, B. Optimizing the NeQuick topside scale height parameters through COSMIC/FORMOSAT-3 radio occultation data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8017005. [Google Scholar] [CrossRef]
- Smirnov, A.; Shprits, Y.; Zhelavskaya, I.; Lühr, H.; Xiong, C.; Goss, A.; Prol, F.S.; Schmidt, M.; Hoque, M.; Pedatella, N.; et al. Intercalibration of the plasma density measurements in Earth’s topside ionosphere. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029334. [Google Scholar] [CrossRef]
- Xiong, C.; Jiang, H.; Yan, R.; Lühr, H.; Stolle, C.; Yin, F.; Smirnov, A.; Piersanti, M.; Liu, Y.; Wan, X.; et al. Solar flux influence on the in-situ plasma density at topside ionosphere measured by Swarm satellites. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030275. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Coco, I.; Piersanti, M.; Giannattasio, F.; De Michelis, P.; Tozzi, R.; Consolini, G. Inter-Calibration and Statistical Validation of Topside Ionosphere Electron Density Observations Made by CSES—01 Mission. Remote Sens. 2022, 14, 4679. [Google Scholar] [CrossRef]
- Haralambous, H.; Paul, K.S.; Singh, A.K.; Gulyaeva, T. Investigation of the Topside Ionosphere over Cyprus and Russia Using Swarm Data. Remote Sens. 2023, 15, 1344. [Google Scholar] [CrossRef]
vTEC RMSE (TECU)—2014 | ||||||
---|---|---|---|---|---|---|
Satellite | Dataset | IRI-NeQuick (g = 0.125) | NeQuick-Corr (g = 0.125) | NeQuick-Corr (g = 0.15) | NeQuick-Corr Lomidze (g = 0.125) | NeQuick-Corr Lomidze (g = 0.14) |
GRACE | Global | 4.803 | 3.722 | 2.938 | 3.119 | 2.993 |
High latitudes | 2.867 | 3.520 | 2.738 | 3.087 | 2.720 | |
Middle latitudes | 2.952 | 3.432 | 2.416 | 2.752 | 2.437 | |
Low latitudes | 7.133 | 4.408 | 3.887 | 3.731 | 4.047 | |
Swarm A | Global | 6.959 | 5.741 | 4.234 | 5.040 | 4.259 |
High latitudes | 4.955 | 5.409 | 4.231 | 4.897 | 4.216 | |
Middle latitudes | 4.826 | 5.500 | 3.894 | 4.774 | 3.917 | |
Low latitudes | 9.971 | 6.610 | 4.878 | 5.730 | 4.953 | |
TerraSAR-X | Global | 4.496 | 3.269 | 2.097 | 2.674 | 2.117 |
High latitudes | 2.413 | 2.935 | 2.040 | 2.539 | 2.044 | |
Middle latitudes | 2.558 | 3.082 | 1.860 | 2.447 | 1.862 | |
Low latitudes | 6.979 | 3.887 | 2.529 | 3.171 | 2.585 | |
COSMIC-1 | Global | 4.905 | 5.014 | 3.302 | 4.619 | 3.552 |
High latitudes | 4.118 | 4.403 | 3.122 | 4.116 | 3.315 | |
Middle latitudes | 4.280 | 4.762 | 3.052 | 4.375 | 3.308 | |
Low latitudes | 5.992 | 6.017 | 3.946 | 5.521 | 4.236 | |
METOP | Global | 2.165 | 2.315 | 1.561 | 1.964 | 1.477 |
High latitudes | 1.543 | 1.710 | 1.283 | 1.500 | 1.203 | |
Middle latitudes | 1.795 | 2.163 | 1.429 | 1.844 | 1.367 | |
Low latitudes | 2.877 | 3.352 | 2.201 | 2.784 | 2.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezzopane, M.; Pignalberi, A.; Pietrella, M.; Haralambous, H.; Prol, F.; Nava, B.; Smirnov, A.; Xiong, C. An Update of the NeQuick-Corr Topside Ionosphere Modeling Based on New Datasets. Atmosphere 2024, 15, 498. https://doi.org/10.3390/atmos15040498
Pezzopane M, Pignalberi A, Pietrella M, Haralambous H, Prol F, Nava B, Smirnov A, Xiong C. An Update of the NeQuick-Corr Topside Ionosphere Modeling Based on New Datasets. Atmosphere. 2024; 15(4):498. https://doi.org/10.3390/atmos15040498
Chicago/Turabian StylePezzopane, Michael, Alessio Pignalberi, Marco Pietrella, Haris Haralambous, Fabricio Prol, Bruno Nava, Artem Smirnov, and Chao Xiong. 2024. "An Update of the NeQuick-Corr Topside Ionosphere Modeling Based on New Datasets" Atmosphere 15, no. 4: 498. https://doi.org/10.3390/atmos15040498
APA StylePezzopane, M., Pignalberi, A., Pietrella, M., Haralambous, H., Prol, F., Nava, B., Smirnov, A., & Xiong, C. (2024). An Update of the NeQuick-Corr Topside Ionosphere Modeling Based on New Datasets. Atmosphere, 15(4), 498. https://doi.org/10.3390/atmos15040498