Characteristics of the East Asian Summer Monsoon Using GK2A Satellite Data
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. Three Leading Modes Associated with the WNPSH
3.2. Evolutionary Features of the WNPSH
4. Conclusions
- All three leading modes appear to be dynamically related to the WNPSH variability, characterized by its westward extension and meridional shifts;
- The intensity of this monsoon precipitation band is regulated by the moisture transport, driven by anomalous anticyclonic circulations around the WNPSH;
- The lead–lag relationships among the PCs time series elucidate the spatial-temporal evolution of the WNPSH, along with the associated atmospheric circulation and precipitation anomalies.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, T.J.G.; Chang, C.P. The Structure and Vorticity Budget of an Early Summer Monsoon through (Mei-Yu) over Southeastern China and Japan. Mon. Weather Rev. 1980, 108, 942–953. [Google Scholar] [CrossRef]
- Ding, Y.H.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- Wei, K.; Ouyang, C.J.; Duan, H.T.; Li, Y.L.; Chen, M.X.; Ma, J.; An, H.C.; Zhou, S. Reflections on the Catastrophic 2020 Yangtze River Basin Flooding in Southern China. Innov.-Amst. 2020, 1, 100038. [Google Scholar] [CrossRef] [PubMed]
- KMA. Abnormal Climate Report 2020; Korea Meteorological Administration: Seoul, Republic of Korea, 2021; p. 212. [Google Scholar]
- Guan, W.N.; Hu, H.B.; Ren, X.J.; Yang, X.Q. Subseasonal zonal variability of the western Pacific subtropical high in summer: Climate impacts and underlying mechanisms. Clim. Dyn. 2019, 53, 3325–3344. [Google Scholar] [CrossRef]
- Choi, W.; Kim, K.Y. Summertime variability of the western North Pacific subtropical high and its synoptic influences on the East Asian weather. Sci. Rep. 2019, 9, 7865. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xiang, B.Q.; Lee, J.Y. Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA 2013, 110, 2718–2722. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.W.; Guo, Y. An evaluation of East Asian summer monsoon forecast with the North American Multimodel Ensemble hindcast data. Int. J. Climatol. 2019, 39, 4838–4852. [Google Scholar] [CrossRef]
- Zhou, F.; Ren, H.L.; Hu, Z.Z.; Liu, M.H.; Wu, J.; Liu, C.Z. Seasonal predictability of primary East Asian summer circulation patterns by three operational climate prediction models. Q. J. R. Meteorol. Soc. 2020, 146, 629–646. [Google Scholar] [CrossRef]
- Lau, K.M.; Li, M.T. The Monsoon of East-Asia and Its Global Associations—A Survey. Bull. Am. Meteorol. Soc. 1984, 65, 114–125. [Google Scholar] [CrossRef]
- Son, J.H.; Seo, K.H.; Wang, B. Dynamical Control of the Tibetan Plateau on the East Asian Summer Monsoon. Geophys. Res. Lett. 2019, 46, 7672–7679. [Google Scholar] [CrossRef]
- Kosaka, Y.; Xie, S.P.; Lau, N.C.; Vecchi, G.A. Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc. Natl. Acad. Sci. USA 2013, 110, 7574–7579. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Y.; Liu, F.; Wang, B.; Xiang, B.Q.; Xing, C.; Wang, H. Different responses of East Asian summer rainfall to El Nino decays. Clim. Dyn. 2019, 53, 1497–1515. [Google Scholar] [CrossRef]
- Wang, Y. Effects of Blocking Anticyclones in Eurasia in the Rainy Season (Meiyu Baiu Season). J. Meteorol. Soc. Jpn. 1992, 70, 929–951. [Google Scholar] [CrossRef]
- Chen, H.M.; Zhou, T.J.; Neale, R.B.; Wu, X.Q.; Zhang, G.J. Performance of the New NCAR CAM3.5 in East Asian Summer Monsoon Simulations: Sensitivity to Modifications of the Convection Scheme. J. Clim. 2010, 23, 3657–3675. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kim, J.G.; Lee, J.G.; Li, T.; Lee, M.I.; Son, S.W.; Hyun, Y.K. The Origin of Systematic Forecast Errors of Extreme 2020 East Asian Summer Monsoon Rainfall in GloSea5. Geophys. Res. Lett. 2021, 48, e2021GL094179. [Google Scholar] [CrossRef]
- Moon, S.; Ha, K.-J.; Moon, M.; Jhun, J.-G.; Moon, J.-Y. Designing of Conceptual Models on Typhoon and Changma Utilizing GK2A Satellite Data. Atmos. Korean Meteorol. Soc. 2016, 26, 215–226. [Google Scholar]
- Zo, I.; Jee, J.B.; Lee, K.T.; Lee, K.H.; Lee, M.Y.; Kwon, Y.S. Radiative Energy Budget for East Asia Based on GK-2A/AMI Observation Data. Remote Sens. 2023, 15, 1558. [Google Scholar] [CrossRef]
- Lee, K.S.; Chung, S.R.; Lee, C.; Seo, M.; Choi, S.; Seong, N.H.; Jin, D.; Kang, M.; Yeom, J.M.; Roujean, J.L.; et al. Development of Land Surface Albedo Algorithm for the GK-2A/AMI Instrument. Remote Sens. 2020, 12, 2500. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J. Daytime Cloud Detection Algorithm Based on a Multitemporal Dataset for GK-2A Imagery. Remote Sens. 2021, 13, 3215. [Google Scholar] [CrossRef]
- Hastuti, M.I.; Min, K.H. Impact of Assimilating GK-2A All-Sky Radiance with a New Observation Error for Summer Precipitation Forecasting. Remote Sens. 2023, 15, 3113. [Google Scholar] [CrossRef]
- Choi, W.; Ho, C.H.; Jung, J.; Chang, M.; Ha, K.J. Synoptic conditions controlling the seasonal onset and days of heatwaves over Korea. Clim. Dyn. 2021, 57, 3045–3053. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction. Statistical Forecasting Project; MIT Department of Meteorology: Cambridge, MA, USA, 1956; p. 49. [Google Scholar]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling Errors in the Estimation of Empirical Orthogonal Functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Yin, G.; Baik, J.; Park, J. Comprehensive analysis of GEO-KOMPSAT-2A and FengYun satellite-based precipitation estimates across Northeast Asia. Gisci. Remote Sens. 2022, 59, 782–800. [Google Scholar] [CrossRef]
- Ha, K.J.; Lee, S.S. On the interannual variability of the Bonin high associated with the East Asian summer monsoon rain. Clim. Dyn. 2007, 28, 67–83. [Google Scholar] [CrossRef]
- Lee, S.S.; Seo, Y.W.; Ha, K.J.; Jhun, J.G. Impact of the western North Pacific subtropical high on the East Asian monsoon precipitation and the Indian Ocean precipitation in the boreal summertime. Asia-Pac. J. Atmos. Sci. 2013, 49, 171–182. [Google Scholar] [CrossRef]
- Yeo, S.R.; Jhun, J.G.; Kim, W. Intraseasonal variability of western North Pacific subtropical high based on the El Nio influence and its relationship with East Asian summer monsoon. Asia-Pac. J. Atmos. Sci. 2012, 48, 43–53. [Google Scholar] [CrossRef]
- Enomoto, T.; Hoskins, B.J.; Matsuda, Y. The formation mechanism of the Bonin high in August. Q. J. R. Meteorol. Soc. 2003, 129, 157–178. [Google Scholar] [CrossRef]
- Pan, X.; Li, T.; Sun, Y.; Zhu, Z.W. Cause of Extreme Heavy and Persistent Rainfall over Yangtze River in Summer 2020. Adv. Atmos. Sci. 2021, 38, 1994–2009. [Google Scholar] [CrossRef]
- Zhang, W.J.; Huang, Z.C.; Jiang, F.; Stuecker, M.F.; Chen, G.S.; Jin, F.F. Exceptionally Persistent Madden-Julian Oscillation Activity Contributes to the Extreme 2020 East Asian Summer Monsoon Rainfall. Geophys. Res. Lett. 2021, 48, e2020GL091588. [Google Scholar] [CrossRef]
- Wie, J.; Kang, J.; Moon, B.K. Role of Madden-Julian Oscillation in predicting the 2020 East Asian summer precipitation in subseasonal-to-seasonal models. Sci. Rep. 2024, 14, 865. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.B.; Chen, D.; Wang, B.; Cheung, H.N.; Liu, F.; Cheng, J.B.; Tang, S.K.; Zhang, Z.P.; Feng, G.L.; Dong, W.J. The Longest 2020 Meiyu Season Over the Past 60 Years: Subseasonal Perspective and Its Predictions. Geophys. Res. Lett. 2021, 48, e2021GL093596. [Google Scholar] [CrossRef]
- Park, C.; Son, S.W.; Kim, H.; Ham, Y.G.; Kim, J.; Cha, D.H.; Chang, E.C.; Lee, G.; Kug, J.S.; Lee, W.S.; et al. Record-Breaking Summer Rainfall in South Korea in 2020: Synoptic Characteristics and the Role of Large-Scale Circulations. Mon. Weather Rev. 2021, 149, 3085–3100. [Google Scholar] [CrossRef]
- Wang, B.; Jhun, J.G.; Moon, B.K. Variability and singularity of Seoul, South Korea, rainy season (1778–2004). J. Clim. 2007, 20, 2572–2580. [Google Scholar] [CrossRef]
- Wang, B.; LinHo. Rainy season of the Asian-Pacific summer monsoon. J. Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef]
- Xu, P.Q.; Wang, L.; Chen, W.; Feng, J.; Liu, Y.Y. Structural Changes in the Pacific-Japan Pattern in the Late 1990s. J. Clim. 2019, 32, 607–621. [Google Scholar] [CrossRef]
- Ninomiya, K.; Shibagaki, Y. Multi-scale features of the Meiyu-Baiu front and associated precipitation systems. J. Meteorol. Soc. Jpn. 2007, 85b, 103–122. [Google Scholar] [CrossRef]
- Times, T.N.Y. South Korea’s Monsoon Rains Set Off Deadly Landslides and Flooding. Available online: https://www.nytimes.com/2023/07/14/world/asia/south-korea-floods-rain.html (accessed on 2 March 2024).
- KMA. Abnormal Climate Report 2021; Korea Meteorological Administration: Seoul, Republic of Korea, 2022; p. 234. [Google Scholar]
- Pall, P.; Allen, M.R.; Stone, D.A. Testing the Clausius-Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim. Dyn. 2007, 28, 351–363. [Google Scholar] [CrossRef]
- Ding, Y.H.; Liang, P.; Liu, Y.J.; Zhang, Y.C. Multiscale Variability of Meiyu and Its Prediction: A New Review. J. Geophys. Res.-Atmos. 2020, 125, e2019JD031496. [Google Scholar] [CrossRef]
- Lee, J.Y.; Wang, B.; Wheeler, M.C.; Fu, X.H.; Waliser, D.E.; Kang, I.S. Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Clim. Dyn. 2013, 40, 493–509. [Google Scholar] [CrossRef]
- Gao, J.Y.; Lin, H.; You, L.J.; Chen, S. Monitoring early-flood season intraseasonal oscillations and persistent heavy rainfall in South China. Clim. Dyn. 2016, 47, 3845–3861. [Google Scholar] [CrossRef]
- Jiang, X.N.; Li, T.; Wang, B. Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Clim. 2004, 17, 1022–1039. [Google Scholar] [CrossRef]
- Qian, Q.W.; Liang, P.; Qi, L.; Ding, Y.H.; He, J.H. Sub-Seasonal Variability of Meridional Activity of Western Pacific Subtropical High in Boreal Late Summer. Front. Earth Sci. 2020, 8, 597969. [Google Scholar] [CrossRef]
- Liu, X.W.; Yang, S.; Kumar, A.; Weaver, S.; Jiang, X.W. Diagnostics of subseasonal prediction biases of the Asian summer monsoon by the NCEP climate forecast system. Clim. Dyn. 2013, 41, 1453–1474. [Google Scholar] [CrossRef]
- Lee, E.J.; Yeh, S.W.; Jhun, J.G.; Moon, B.K. Seasonal change in anomalous WNPSH associated with the strong East Asian summer monsoon. Geophys. Res. Lett. 2006, 33, L21702. [Google Scholar] [CrossRef]
2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|
PC1 | 0.02 | −0.14 | −0.18 | −0.31 ** |
PC2 | 0.44 ** | 0.39 ** | 0.20 | 0.24 * |
PC3 | 0.20 | 0.20 | 0.16 | 0.48 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wie, J.; Byon, J.-Y.; Moon, B.-K. Characteristics of the East Asian Summer Monsoon Using GK2A Satellite Data. Atmosphere 2024, 15, 543. https://doi.org/10.3390/atmos15050543
Wie J, Byon J-Y, Moon B-K. Characteristics of the East Asian Summer Monsoon Using GK2A Satellite Data. Atmosphere. 2024; 15(5):543. https://doi.org/10.3390/atmos15050543
Chicago/Turabian StyleWie, Jieun, Jae-Young Byon, and Byung-Kwon Moon. 2024. "Characteristics of the East Asian Summer Monsoon Using GK2A Satellite Data" Atmosphere 15, no. 5: 543. https://doi.org/10.3390/atmos15050543
APA StyleWie, J., Byon, J. -Y., & Moon, B. -K. (2024). Characteristics of the East Asian Summer Monsoon Using GK2A Satellite Data. Atmosphere, 15(5), 543. https://doi.org/10.3390/atmos15050543