Protective Effects of Resveratrol on Cytotoxicity of Mouse Hepatic Stellate Cells Induced by PM2.5
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM2.5 Collection and Preparation
2.2. mHSC Culture
2.3. Assessment of Cytotoxicity
2.4. Experimental Grouping
2.5. Measurement of ROS, SOD, MDA, LDH and IL-1β Levels in the Cells
2.6. Western Blot
2.7. Statistical Analysis
3. Results
3.1. mHSC Viability Results Provide a Dosage Basis of PM2.5 and RES
3.2. Effect of RES on Oxidative Stress and Cytotoxicity Induced by PM2.5
3.3. Effect of RES on PM2.5-Induced Fibrosis Biomarker Level Change in mHSCs
3.4. The Effects of RES Activate SIRT1 on PM2.5-Induced NF-κB/NLRP3 Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krittanawong, C.; Qadeer, Y.K.; Hayes, R.B.; Wang, Z.; Virani, S.; Thurston, G.D.; Lavie, C.J. PM2.5 and cardiovascular health risks. Curr. Probl. Cardiol. 2023, 48, 101670. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.E.; Shin, C.Y.; Han, S.H.; Kwon, K.J. Astaxanthin suppresses PM2.5-induced neuroinflammation by regulating Akt Phosphorylation in BV-2 Microglial cells. Int. J. Mol. Sci. 2020, 21, 7227. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Feng, Y.J.; Huang, H.; Cui, L.X.; Li, F.Q. PM2.5 exposure induces reproductive injury through IRE1/JNK/autophagy signaling in male rats. Ecotoxicol. Environ. Saf. 2021, 211, 111924. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.X.; Ge, C.X.; Qin, Y.T.; Gu, T.T.; Lou, D.S.; Li, Q.; Hu, L.F.; Feng, J.; Huang, P.; Tan, J. Prolonged PM2.5 exposure elevates risk of oxidative stress-driven nonalcoholic fatty liver disease by triggering increase of dyslipidemia. Free Radic. Biol. Med. 2019, 130, 542–556. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.N.; Wang, G.H.; Zhou, F.; Hao, J.J.; Tian, L.; Guan, L.F.; Geng, X.K.; Ding, Y.C.; Wu, H.W.; Zhang, K.Z. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy. Ecotoxicol. Environ. Saf. 2019, 167, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.X.; Tan, J.; Zhong, S.Y.; Lai, L.L.; Chen, G.; Zhao, J.J.; Yi, C.; Wang, L.Y.; Zhou, L.W.; Tang, T.T.; et al. Nrf2 mitigates prolonged PM2.5 exposure-triggered liver inflammation by positively regulating SIKE activity: Protection by Juglanin. Redox Biol. 2020, 36, 101645. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Xia, H.; Zhao, Q.; Sun, G.J.; Cai, Y.Y. Long-term exposure to fine particulate matter and the risk of chronic liver diseases: A Meta-Analysis of observational studies. Int. J. Environ. Res. Public Health 2022, 19, 10305. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.X.; Wu, L.; Yang, G.; Zhang, C.; Liu, X.F.; Sun, X.; Chen, X.; Wang, N.N. The influence of PM2.5 exposure on non-alcoholic fatty liver disease. Life Sci. 2021, 270, 119135. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yang, Q.; Zhou, Q.; Cao, W.; Yu, S.; Zhan, S.; Sun, F. Long-term exposure to air pollution, habitual physical activity and risk of non-alcoholic fatty liver disease: A prospective cohort study. Ecotoxicol. Environ. Saf. 2022, 15, 113440. [Google Scholar] [CrossRef]
- Jian, T.Y.; Ding, X.Q.; Wu, Y.X.; Ren, B.R.; Li, W.L.; Lv, H.; Chen, J. Hepatoprotective effect of loquat leaf flavonoids in PM2.5-induced non-alcoholic fatty liver disease via regulation of IRs-1/Akt and CYP2E1/JNK Pathways. Int. J. Mol. Sci. 2018, 19, 3005. [Google Scholar] [CrossRef]
- Du, C.; Ren, Y.J.; Wang, Q.W.; Jin, L. Synthesis and Anti-tumor Activities of resveratrol Derivatives on Cervical Cancer HeLa Cells. Chin. J. Org. Chem. 2013, 33, 1279–1283. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Ramprasath, V.R.; Aluko, R.E.; Jones, P.J.H. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr. Rev. 2008, 66, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Kumar, V.; Singh, A.K.; Kashyap, M.P.; Khanna, V.K.; Siddiqui, M.A.; Pant, A.B. Trans-Resveratrol protects ischemic PC12 Cells by inhibiting the hypoxia associated transcription factors and increasing the levels of antioxidant defense enzymes. ACS Chem. Neurosci. 2013, 4, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Yap, S.W.; Qin, C.X.; Woodman, O.L. Effects of resveratrol and flavonols on cardiovascular function: Physiological mechanisms. BioFactors 2010, 36, 350–359. [Google Scholar] [CrossRef]
- Bishayee, A.; Darvesh, A.S.; Politis, T.; McGory, R. Resveratrol and liver disease: From bench to bedside and community. Liver Int. 2010, 30, 1103–1114. [Google Scholar] [CrossRef]
- Vairappan, B.; Sundhar, M.; Srinivas, B.H. Resveratrol restores neuronal tight junction proteins through correction of ammonia and inflammation in CCl4-induced cirrhotic mice. Mol. Neurobiol. 2019, 56, 4718–4729. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wang, L.; Li, X.; Liu, R.; Zhang, L.; Xu, Y. REDD1 (regulated in development and DNA damage-1)/autophagy inhibition ameliorates fine particulate matter (PM2.5) -induced inflammation and apoptosis in BEAS-2B cells. Bioengineered 2021, 12, 1403–1414. [Google Scholar] [CrossRef]
- Jin, X.T.; Su, R.J.; Li, R.J.; Song, L.; Chen, M.L.; Cheng, L.; Li, Z.Y. Amelioration of particulate matter-induced oxidative damage by vitamin c and quercetin in human bronchial epithelial cells. Chemosphere 2016, 144, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, M.; Li, Z.P.; Yue, J.W.; Xu, M.; Zhang, Y.H.; Yung, K.K.L.; Li, R.J. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells. Chemosphere 2019, 218, 577–588. [Google Scholar] [CrossRef]
- He, Y.G.; Zhang, Y.D.; Zhang, G.B.; Li, L.; He, Y.F.; Xi, J.K.; Zheng, H. Role of zinc in resveratrol-induced mitochondrial cardioprotection. Chin. J. New Drugs 2016, 25, 928–932+948. [Google Scholar]
- Jeong, S.; Park, S.A.; Park, I.; Kim, P.; Cho, N.H.; Hyun, J.W.; Hyun, Y.M. PM2.5 exposure in the respiratory system induces distinct inflammatory signaling in the lung and the liver of mice. J. Immunol. Res. 2019, 2019, 3486841. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Chen, J.J.; Mo, W.B. Effects of dendrobium officinale flavonoid on oxidative stress and autophagy in the liver of an exhaustive exercise rat model. Chin. J. Tissue Eng. Res. 2022, 26, 3212–3219. [Google Scholar]
- Ma, W.W.; Zhang, S.S.; Li, Y.; Chen, T.S.; Yang, Q.; Feng, X. Adiponectin alleviates non-alcoholic fatty liver injury via regulating oxidative stress in liver cells. Minerva Med. 2022, 113, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.P.; Qin, L.; Nong, R.N.; Liu, D.H.; Wang, J.J.; Chen, Y.; Wang, X.Y. Effects of Isodon ternifolia on NLRP3/Caspase-1/GSDMD Signaling Pathway in rats with hepatic fibrosis induced by CCl4. Pharmacol. Clin. Chin. Mater. Med. 2021, 37, 96–101. [Google Scholar]
- Xin, S.; Qu, J.; Xu, N.; Xu, B. PM2.5 inhalation aggravates inflammation, oxidative stress, and apoptosis in nonalcoholic fatty liver disease. Environ. Dis. 2019, 4, 62–68. [Google Scholar]
- Yao, Q.C.; Wu, Q.C.; Xu, X.Y.; Xing, Y.X.; Liang, J.; Lin, Q.Q.; Huang, M.Q.; Chen, Y.L.; Lin, B.; Chen, W.F. Resveratrol ameliorates systemic sclerosis via suppression of fibrosis and inflammation through activation of SIRT1/mTOR signaling. Drug Des. Dev. Ther. 2020, 14, 5337–5348. [Google Scholar] [CrossRef]
- Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017, 174, 1633–1646. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahmad, R. Resveratrol mitigate structural changes and hepatic stellate cell activation in N’-nitrosodimethylamine-induced liver fibrosis via restraining oxidative damage. Chem. Biol. Interact. 2014, 221, 1–12. [Google Scholar] [CrossRef]
- Bujanda, L.; Hijona, E.; Larzabal, M.; Beraza, M.; Aldazabal, P.; García-Urkia, N.; Sarasqueta, C.; Cosme, A.; Irastorza, B.; González, A.; et al. Resveratrol inhibits nonalcoholic fatty liver disease in rats. BMC Gastroenterol. 2008, 8, 40. [Google Scholar] [CrossRef]
- Li, R.; Li, J.; Huang, Y.; Li, H.; Yan, S.; Lin, J.; Chen, Y.; Wu, L.; Liu, B.; Wang, G.; et al. Polydatin attenuates diet-induced nonalcoholic steatohepatitis and fibrosis in mice. Int. J. Biol. Sci. 2018, 14, 1411–1425. [Google Scholar] [CrossRef]
- Campana, L.; Iredale, J.P. Regression of Liver Fibrosis. Semin. Liver Dis. 2017, 37, 1–10. [Google Scholar] [PubMed]
- Lin, L.; Zhou, F.; Shen, S.; Zhang, T. Fighting liver fibrosis with naturally occurring antioxidants. Planta Med. 2018, 84, 1318–1333. [Google Scholar] [CrossRef]
- Higashi, T.; Friedman, S.L.; Hoshida, Y.J. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. 2017, 121, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Y.; Chen, H.; Yuan, Q.; Wang, J.; Niu, M.; Hou, L.; Gu, J.; Zhang, J. MyD88 in hepatic stellate cells enhances liver fibrosis via promoting macrophage M1 polarization. Cell Death Dis. 2022, 13, 411. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Cao, C.; Hu, X.; Du, K.; Zhang, J.; Li, M.; Li, B.; Lin, H.; Zhang, A.; Li, Y.; et al. Kaempferol attenuates carbon tetrachloride (CCl4)-induced hepatic fibrosis by promoting ASIC1a degradation and suppression of the ASIC1a-mediated ERS. Phytomedicine 2023, 121, 155125. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, B.; Xie, J.; Jiang, X.; Xiao, B.; Hu, X.; Xiang, J. Aspirin attenuates liver fibrosis by suppressing TGF-β1/Smad signaling. Mol. Med. Rep. 2022, 25, 181. [Google Scholar] [CrossRef]
- Attallah, A.M.; Mosa, T.E.; Omran, M.M.; Abo-Zeid, M.M.; El-Dosoky, I.; Shaker, Y.M. Immunodetection of collagen types I, II, III, and IV for differentiation of liver fibrosis stages in patients with chronic HCV. J. Immunoass. Immunochem. 2007, 28, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Kendall, R.T.; Feghali-Bostwick, C.A. Fibroblasts in fibrosis: Novel roles and mediators. Front. Pharmacol. 2014, 5, 91491. [Google Scholar] [CrossRef]
- Abdu, S.B.; Al-Bogami, F.M. Influence of resveratrol on liver fibrosis induced by dimethylnitrosamine in male rats. Saudi J. Biol. Sci. 2019, 26, 201–209. [Google Scholar] [CrossRef]
- Mangan, M.S.J.; Olhava, E.J.; Roush, W.R.; Seidel, H.M.; Glick, G.D.; Latz, E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov. 2018, 17, 588–606. [Google Scholar] [CrossRef]
- Wu, X.Q.; Dong, L.; Lin, X.H.; Li, J. Relevance of the NLRP3 inflammasome in the pathogenesis of chronic liver disease. Front. Immunol. 2017, 8, 1728. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Ghani, A.; Mehal, W.Z. Inflammasome biology in fibrogenesis. Biochim. Biophys. Acta Mol. Basis Dis. 2013, 1832, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.H.; Wang, Z.H.; Liu, X.; Xiao, H.; Liu, Y.C.; Wang, J.Q.; Chen, C.L.; Wang, X.; Liu, W.; Xiang, Z. Therapeutic effect of Yiyi Fuzi Baijiang formula on TNBS-induced ulcerative colitis via metabolism and Th17/Treg cell balance. J. Ethnopharmacol. 2023, 309, 116301. [Google Scholar] [CrossRef] [PubMed]
- Long, D.; Wei, W. Role of NLRP3/Caspase-1/IL-1β signaling pathway in liver fibrosis. Chin. Arch. Tradit. Chin. Med. 2022, 40, 75–79. [Google Scholar]
- Rai, R.C.; Bagul, P.K.; Banerjee, S.K. NLRP3 inflammasome drives inflammation in high fructose fed diabetic rat liver: Effect of resveratrol and metformin. Life Sci. 2020, 253, 117727. [Google Scholar] [CrossRef] [PubMed]
- Li, F. Resveratrol Regulates NLRP3 Inflammasome and Its Role in Liver Fibrosis Mice. Master’s Thesis, Guilin Medical University, Guilin, China, 2021. [Google Scholar]
- Wang, W.; Hu, C.G.; Liang, W.L. Study on Inhibitory Effect of Danggui Shaoyao San combined with TLR4 inhibitor on rat liver fibrosis and regulation of NF-κB/NLRP3 pathway. World Sci. Technol. Mod. Tradit. Chin. Med. Mater. Med. 2023, 25, 1147–1154. [Google Scholar]
- Scheiblich, H.; Schlütter, A.; Golenbock, D.T.; Latz, E.; Martinez-Martinez, P.; Heneka, M.T. Activation of the NLRP3 inflammasome in microglia: The role of ceramide. J. Neurochem. 2017, 143, 534–550. [Google Scholar] [CrossRef]
- Huo, S.M.; Li, B.; Du, J.Y.; Zhang, X.L.; Zhang, J.; Wang, Q.; Song, M.; Li, Y. Dibutyl phthalate induces liver fibrosis via p38MAPK/NF-κB/NLRP3-mediated pyroptosis. Sci. Total Environ. 2023, 897, 165500. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yan, X.; Zhu, L.; Lin, M.; Lyu, D.; Liao, J.; Chen, F. Mechanic study of Qushi Kaiyu decoction on non-alcoholic fatty liver disease model rats based on the inhibition of TLR4/NF-ĸB pathway. TMR Integr. Med. 2023, 7, e23019. [Google Scholar] [CrossRef]
- Izzo, C.; Annunziata, M.; Melara, G.; Sciorio, R.; Dallio, M.; Masarone, M.; Federico, A.; Persico, M. The Role of resveratrol in liver disease: A comprehensive review from in vitro to clinical trials. Nutrients 2021, 13, 933. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhang, Y.L.; Wu, Y.C. The role of sirt1 in ischemic stroke: Pathogenesis and therapeutic strategies. Front. Neurosci. 2018, 12, 833. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gao, J.; Wan, X.Y.; Yi, C.; Xu, C.F.; Feng, Z.M.; Zeng, H.; Lin, Y.M.; Ma, H.; Xu, P.; et al. Allyl isothiocyanate ameliorates lipid accumulation and inflammation in nonalcoholic fatty liver disease via the Sirt1/AMPK and NF-κB signaling pathways. World J. Gastroenterol. 2019, 25, 5120–5133. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.Y.; Zhang, W.X.; Qiao, J.F.; He, B.M. Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD. Int. Immunopharmacol. 2018, 62, 23–28. [Google Scholar] [CrossRef]
- Nadtochiy, S.M.; Yao, H.W.; McBurney, M.W.; Gu, W.; Guarente, L.; Rahman, I.; Brookes, P.S. SIRT1-mediated acute cardioprotection. Am. J. Physiol.-Heart Circ. Physiol. 2011, 301, H1506. [Google Scholar] [CrossRef]
- Meng, X.; Zhou, J.; Zhao, C.N.; Gan, R.Y.; Li, H.B. Health benefits and molecular mechanisms of resveratrol: A narrative review. Foods 2020, 9, 340. [Google Scholar] [CrossRef] [PubMed]
- Rawat, D.; Chhonker, S.K.; Naik, R.A.; Koiri, R.K. Modulation of antioxidant enzymes, SIRT1 and NF-κB by resveratrol and nicotinamide in alcohol-aflatoxin B1-induced hepatocellular carcinoma. J. Biochem. Mol. Toxicol. 2021, 35, e22625. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.D.; Jiang, H.X.; Luo, W.; Hu, B.L.; Yu, B.; Li, F.; Fu, Y.J. Resveratrol can improve liver fibrosis by inhibiting the NF-κB pathway in liver macrophages. Chin. J. Gastroenterol. Hepatol. 2020, 29, 576–580. [Google Scholar]
- Shu, X.H. Resveratrol and its bioavailability. J. Dalian Med. Univ. 2018, 40, 193–197. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Chen, S.; Bai, L.; Chen, W.; Li, R. Protective Effects of Resveratrol on Cytotoxicity of Mouse Hepatic Stellate Cells Induced by PM2.5. Atmosphere 2024, 15, 588. https://doi.org/10.3390/atmos15050588
Zhang M, Chen S, Bai L, Chen W, Li R. Protective Effects of Resveratrol on Cytotoxicity of Mouse Hepatic Stellate Cells Induced by PM2.5. Atmosphere. 2024; 15(5):588. https://doi.org/10.3390/atmos15050588
Chicago/Turabian StyleZhang, Mei, Shanshan Chen, Lirong Bai, Wenqi Chen, and Ruijin Li. 2024. "Protective Effects of Resveratrol on Cytotoxicity of Mouse Hepatic Stellate Cells Induced by PM2.5" Atmosphere 15, no. 5: 588. https://doi.org/10.3390/atmos15050588
APA StyleZhang, M., Chen, S., Bai, L., Chen, W., & Li, R. (2024). Protective Effects of Resveratrol on Cytotoxicity of Mouse Hepatic Stellate Cells Induced by PM2.5. Atmosphere, 15(5), 588. https://doi.org/10.3390/atmos15050588