Flash Flood Risk Assessment in the Asir Region, Southwestern Saudi Arabia, Using a Physically-Based Distributed Hydrological Model and GPM IMERG Satellite Rainfall Data
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Hydrologic Simulation Model
3.2. Model Description and Setup
3.3. Rainfall Data
4. Results and Discussion
4.1. Flood Hydrographs and Peak Runoff
- (i)
- Impacts on the built environment such as damage to property and infrastructure.
- (ii)
- Impacts on the natural environmental such as vegetation cover, forests, and agricultural lands.
- (iii)
- Impact on the human population and their activities like injuries, loss of life and health, and the economy.
4.2. Model Validation
4.3. Limitations of the Study and Future Direction
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sene, K. Flash floods. In Hydrometeorology: Forecasting and Applications; Springer: Cham, Switzerland, 2016; pp. 273–312. [Google Scholar]
- Alarifi, S.S.; Abdelkareem, M.; Abdalla, F.; Alotaibi, M. Flash flood hazard mapping using remote sensing and GIS techniques in southwestern Saudi Arabia. Sustainability 2022, 14, 14145. [Google Scholar] [CrossRef]
- Mashaly, J.; Ghoneim, E. Flash flood hazard using optical, radar, and stereo-pair derived dem: Eastern desert, Egypt. Remote Sens. 2018, 10, 1204. [Google Scholar] [CrossRef]
- Montz, B.E.; Gruntfest, E. Flash flood mitigation: Recommendations for research and applications. Glob. Environ. Chang. Part B Environ. Hazards 2002, 4, 15–22. [Google Scholar] [CrossRef]
- WMO. Guide to Hydrological Practices, 6th ed.; WMO-No. 168; WMO: Geneva, Switzerland, 2009. [Google Scholar]
- AlAli, A.M.; Salih, A.; Hassaballa, A. Geospatial-Based Analytical Hierarchy Process (AHP) and Weighted Product Model (WPM) Techniques for Mapping and Assessing Flood Susceptibility in the Wadi Hanifah Drainage Basin, Riyadh Region, Saudi Arabia. Water 2023, 15, 1943. [Google Scholar] [CrossRef]
- Al-Areeq, A.M.; Al-Zahrani, M.A.; Sharif, H.O. Assessment of the performance of satellite rainfall products over Makkah watershed using a physically based hydrologic model. Appl. Water Sci. 2022, 12, 246. [Google Scholar] [CrossRef]
- Sharif, H.O.; Al-Zahrani, M.; El Hassan, A. Physically, fully distributed hydrologic simulations driven by GPM satellite rainfall over an urbanizing arid catchment in Saudi Arabia. Water 2017, 9, 163. [Google Scholar] [CrossRef]
- Foody, G.M.; Ghoneim, E.M.; Arnell, N.W. Predicting locations sensitive to flash flooding in an arid environment. J. Hydrol. 2004, 292, 48–58. [Google Scholar] [CrossRef]
- Ahmed, I.; Pan, N.D.; Debnath, J.; Bhowmik, M.; Bhattacharjee, S. Flood hazard zonation using GIS-based multi-parametric Analytical Hierarchy Process. Geosyst. Geoenviron. 2024, 3, 100250. [Google Scholar] [CrossRef]
- Hamouda, M.A.; Hinge, G.; Yemane, H.S.; Al Mosteka, H.; Makki, M.; Mohamed, M.M. Reliability of GPM IMERG Satellite Precipitation Data for Modelling Flash Flood Events in Selected Watersheds in the UAE. Remote Sens. 2023, 15, 3991. [Google Scholar] [CrossRef]
- Mohamed, A.; Worku, H. Urban land cover and morphometric analysis for flash flood vulnerability mapping and riparian landscape conservation in Kebena River watershed, Addis Ababa. Appl. Geomat. 2021, 13, 15–28. [Google Scholar] [CrossRef]
- Maneechot, L.; Wong, Y.J.; Try, S.; Shimizu, Y.; Bharambe, K.P.; Hanittinan, P.; Ram-Indra, T.; Usman, M. Evaluating the necessity of post-processing techniques on d4PDF data for extreme climate assessment. Environ. Sci. Pollut. Res. 2023, 30, 102531–102546. [Google Scholar] [CrossRef]
- Usman, M.; Ndehedehe, C.E.; Farah, H.; Ahmed, B.; Wong, Y.; Adeyeri, O.E. Application of a Conceptual Hydrological Model for Streamflow Prediction Using Multi-Source Precipitation Products in a Semi-Arid River Basin. Water 2022, 14, 1260. [Google Scholar] [CrossRef]
- Adnan, R.M.; Petroselli, A.; Heddam, S.; Santos CA, G.; Kisi, O. Comparison of different methodologies for rainfall-runoff modeling: Machine learning vs conceptual approach. Nat. Hazards 2021, 105, 2987–3011. [Google Scholar] [CrossRef]
- He, X.; Luo, J.; Zuo, G.; Xie, J. Daily Runoff Forecasting Using a Hybrid Model Based on Variational Mode Decomposition and Deep Neural Networks. Water Resour. Manag. 2019, 33, 1571–1590. [Google Scholar] [CrossRef]
- Mani, S.T.; Kolluru, V.; Amai, M.; Acharya, T.D. Enhanced streamflow simulations using nudging based optimization coupled with data-driven and hydrological models. J. Hydrol. Reg. Stud. 2022, 43, 101190. [Google Scholar] [CrossRef]
- Yan, X.; Xu, K.; Feng, W.; Chen, J. A rapid prediction model of urban flood inundation in a high-risk area coupling machine learning and numerical simulation approaches. Int. J. Disaster Risk Sci. 2021, 12, 903–918. [Google Scholar] [CrossRef]
- Sezen, C.; Šraj, M. Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models. Sci. Total Environ. 2024, 926, 171684. [Google Scholar] [CrossRef] [PubMed]
- Motta, M.; de Castro Neto, M.; Sarmento, P. A mixed approach for urban flood prediction using Machine Learning and GIS. Int. J. Disaster Risk Reduct. 2021, 56, 102154. [Google Scholar] [CrossRef]
- Al-Amri, N.S.; Abdurahman, S.G.; Elfeki, A.M. Modeling Aquifer Responses from Flash Flood Events through Ephemeral Stream Beds: Case Studies from Saudi Arabia. Water 2023, 15, 2735. [Google Scholar] [CrossRef]
- Sulaiman, A.; Elawadi, E.; Mogren, S. Gravity interpretation to image the geologic structures of the coastal zone in al Qunfudhah area, southwest Saudi Arabia. Geophys. J. Int. 2018, 2143, 1623–1632. [Google Scholar] [CrossRef]
- Helmi, A.M.; Elgamal, M.; Farouk, M.I.; Abdelhamed, M.S.; Essawy, B.T. Evaluation of Geospatial Interpolation Techniques for Enhancing Spatiotemporal Rainfall Distribution and Filling Data Gaps in Asir Region, Saudi Arabia. Sustainability 2023, 15, 14028. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Mohammed, S.A.; Hamouda, M.A.; Dal Maso, M.; Mohamed, M.M. Performance of the IMERG Precipitation Products over High-latitudes Region of Finland. Remote Sens. 2021, 13, 2073. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction, 5th ed.; Springer: Cham, Switzerland, 1994. [Google Scholar]
- Luca, C. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar]
- Maidment, D.R. Handbook of Hydrology, 2nd ed.; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Ghoneim, E.; Robinson, C.; El-Baz, F. Radar topography data reveal drainage relics in the eastern Shahra. Int. J. Remote Sens. 2007, 28, 1759–1772. [Google Scholar] [CrossRef]
- Michel, C.; Andréassian, V.; Perrin, C. Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure? Water Resour. Res. 2005, 41, W02011. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Long-term hydrological simulation based on the Soil Conservation Service curve number. Hydrol. Process. 2004, 18, 1291–1313. [Google Scholar] [CrossRef]
- Kolekar, S.S.; Mishra, A.; Choudhari, P.; Choudhari, N.R. Identification of specific areas for water conservation measures using Geoinformatics approach. Arab. J. Geosci. 2021, 14, 531. [Google Scholar] [CrossRef]
- Ghoneim, E. Optimum groundwater locations in the northern United Arab Emirates. Int. J. Remote Sens. 2008, 29, 5879–5906. [Google Scholar] [CrossRef]
- Babiker, I.S.; Mohamed, M.A.A. Use of NRCS-curve number method for peak discharge estimation in Sharqu ElNeil locality, Khartoum, Sudan. Arab. J. Geosci. 2019, 12, 541. [Google Scholar] [CrossRef]
- Salih, A.A.; Hamid, A.A. Hydrological studies in the White Nile state in Sudan. Egypt. J. Remote Sens. Space Sci. 2017, 20, S31–S38. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Elagib, N.A.; Gaese, H.; Heinrich, J. Rainfall conditions and rainwater harvesting potential in the urban area of Khartoum. Resour. Conserv. Recycl. 2014, 91, 89–99. [Google Scholar] [CrossRef]
- Ghoneim, E.; Foody, G.M. Assessing flash flood hazard in an arid mountainous region. Arab. J. Geosci. 2013, 6, 1191–1202. [Google Scholar] [CrossRef]
- Rao, M.P.; Cook, E.R.; Cook, B.I.; D’Arrigo, R.D.; Palmer, J.G.; Lall, U.; Woodhouse, C.A.; Buckley, B.M.; Uriarte, M.; Bishop, D.A.; et al. Seven centuries of reconstructed Brahmaputra River discharge demonstrate underestimated high discharge and flood hazard frequency. Nat. Commun. 2020, 11, 6017. [Google Scholar] [CrossRef]
- Lautenbach, S.; Voinov, A.; Seppelt, R. Localization effects of land use change on hydrological models. In Proceeding of the 3rd International Congress on Environmental Modelling and Software, Burlington, VT, USA, 9–13 July 2006. [Google Scholar]
- US Army Corps of Engineers. Hydrologic Modeling System HEC-HMS–User’s Manual; Institute for Water Resources, Hydrologic Engineering Center: Davis, CA, USA, 2013; Available online: https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.0.pdf (accessed on 23 February 2024).
- Halwatura, D.; Najim, M.M.M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Model. Softw. 2013, 46, 155–162. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology, 1st ed.; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Jiang, L.; Bauer-Gottwein, P. How Do GPM IMERG Precipitation Estimates Perform as Hydrological Model Forcing? Evaluation for 300 Catchments across Mainland China. J. Hydrol. 2019, 572, 486–500. [Google Scholar] [CrossRef]
- Behrangi, A.; Khakbaz, B.; Jaw, T.C.; AghaKouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic Evaluation of Satellite Precipitation Products over a Mid-Size Basin. J. Hydrol. 2011, 397, 225–237. [Google Scholar] [CrossRef]
- Sun, R.; Yuan, H.; Liu, X.; Jiang, X. Evaluation of the Latest Satellite–Gauge Precipitation Products and Their Hydrologic Applications over the Huaihe River Basin. J. Hydrol. 2016, 536, 302–319. [Google Scholar] [CrossRef]
- Reily Shawn, J.; DeGloria Stephen, D.; Elliot Robert, A. Terrain Ruggedness Index That Quantifies Topographic Heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Patton, P.C.; Baker, V.R. Morphometry and floods in small basins subject to diverse hydro-geomorphic controls. Water Resour. Res. 1976, 12, 941–952. [Google Scholar] [CrossRef]
- Darboux, F.; Reichert, J.M.; Huang, C. Soil roughness effects on runoff and sediment production. In Proceedings of the 13th International Soil Conservation Organization Conference, Brisbane, Australia, 4–8 July 2004. [Google Scholar]
- Khzr, B.O.; Ibrahim, G.R.F.; Hamid, A.A.; Ail, S.A. Runoff estimation using SCS CN and GIS techniques in the Sulaymaniyah sub-basin of the Kurdistan region of Iraq. J. Environ. Sustain. 2022, 24, 2640–2655. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 2017, 546, 44–59. [Google Scholar] [CrossRef]
- Nicolau, J.M.; Solé-Benet, A.; Puigdefábregas, J.; Gutiérrez, L. Effects of soil and vegetation on runoff along a catena in semi-arid Spain. Geomorphology 1996, 14, 297–309. [Google Scholar] [CrossRef]
- Leonard, L.A.; Reed, D.J. Hydrodynamics and sediment transport through tidal 892 marsh canopies. J. Coast. Res. Spec. Issue 2002, 36, 459–469. [Google Scholar]
- Sugianto, S.; Deli, A.; Miswar, E.; Rusdi, M.; Irham, M. The effect of land use and land cover changes on flood occurrence in Teunom Watershed, Aceh Jaya. Land 2022, 11, 1271. [Google Scholar] [CrossRef]
Sub-Basin ID | Drainage Area (km2) | Peak Discharge (m3/s) | Relief Ratio | Stream Frequency | Curve Number | Drainage Density |
---|---|---|---|---|---|---|
Sub-basin-23 | 298.37 | 0.6 | 0.05 | 0.01 | 82.68 | 0.10 |
Sub-basin-15 | 121.60 | 0.3 | 0.05 | 0.03 | 84.26 | 0.07 |
Sub-basin-6 | 327.51 | 0.6 | 0.06 | 0.02 | 81.07 | 0.06 |
Sub-basin-11 | 692.92 | 1.8 | 0.02 | 0.01 | 88.44 | 0.12 |
Sub-basin-17 | 234.23 | 0.7 | 0.03 | 0.02 | 87.17 | 0.16 |
Sub-basin-5 | 518.30 | 0.8 | 0.05 | 0.01 | 81.07 | 0.06 |
Sub-basin-22 | 121.73 | 0.3 | 0.03 | 0.02 | 84.51 | 0.09 |
Sub-basin-19 | 385.55 | 0.9 | 0.02 | 0.01 | 86.11 | 0.11 |
Sub-basin-10 | 135.87 | 0.5 | 0.02 | 0.03 | 88.60 | 0.07 |
Sub-basin-14 | 153.83 | 0.4 | 0.03 | 0.03 | 84.26 | 0.17 |
Sub-basin-24 | 111.13 | 0.3 | 0.02 | 0.04 | 86.91 | 0.15 |
Sub-basin-7 | 268.75 | 0.5 | 0.06 | 0.01 | 79.57 | 0.07 |
Sub-basin-3 | 247.64 | 0.5 | 0.07 | 0.02 | 80.43 | 0.06 |
Sub-basin-1 | 233.96 | 0.4 | 0.05 | 0.02 | 80.43 | 0.08 |
Sub-basin-2 | 107.83 | 0.2 | 0.03 | 0.05 | 83.83 | 0.002 |
Sub-basin-4 | 211.31 | 0.4 | 0.03 | 0.02 | 81.40 | 0.13 |
Sub-basin-16 | 129.64 | 0.4 | 0.04 | 0.02 | 85.29 | 0.12 |
Sub-basin-18 | 163.29 | 0.5 | 0.02 | 0.03 | 86.01 | 0.17 |
Sub-basin-13 | 101.66 | 0.3 | 0.04 | 0.04 | 86.23 | 0.02 |
Sub-basin-12 | 670.17 | 0.2 | 0.01 | 0.01 | 67.39 | 0.12 |
Flood Areas | Latitude | Longitude | Associated Sub-Basin | Potential Flood Risk |
---|---|---|---|---|
Rijal Almaa | 18.30137 | 42.13919 | 15 | Very low risk |
Muhayil | 18.54755 | 42.05328 | 11 | Very high risk |
Tanomah | 18.94065 | 42.18010 | 7 | Moderate risk |
G. Thirban | 19.00817 | 42.01792 | 1 | Moderate risk |
Sahar Al Aasem | 18.71099 | 42.22681 | 3 | Moderate risk |
G. Sawda | 18.27780 | 42.36421 | 23 | High risk |
Qana | 18.34476 | 41.98872 | 19 | Very high risk |
Al Nasim | 18.57988 | 42.02882 | 5 | Very high risk |
Makail | 18.51845 | 42.01946 | 17 | High risk |
Al Salamah | 18.52362 | 42.0745 | 11 | Very high risk |
Alkhaldiyah | 18.55077 | 42.02208 | 11 | Very high risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salih, A.; Hassablla, A. Flash Flood Risk Assessment in the Asir Region, Southwestern Saudi Arabia, Using a Physically-Based Distributed Hydrological Model and GPM IMERG Satellite Rainfall Data. Atmosphere 2024, 15, 624. https://doi.org/10.3390/atmos15060624
Salih A, Hassablla A. Flash Flood Risk Assessment in the Asir Region, Southwestern Saudi Arabia, Using a Physically-Based Distributed Hydrological Model and GPM IMERG Satellite Rainfall Data. Atmosphere. 2024; 15(6):624. https://doi.org/10.3390/atmos15060624
Chicago/Turabian StyleSalih, Abdelrahim, and Abdalhaleem Hassablla. 2024. "Flash Flood Risk Assessment in the Asir Region, Southwestern Saudi Arabia, Using a Physically-Based Distributed Hydrological Model and GPM IMERG Satellite Rainfall Data" Atmosphere 15, no. 6: 624. https://doi.org/10.3390/atmos15060624
APA StyleSalih, A., & Hassablla, A. (2024). Flash Flood Risk Assessment in the Asir Region, Southwestern Saudi Arabia, Using a Physically-Based Distributed Hydrological Model and GPM IMERG Satellite Rainfall Data. Atmosphere, 15(6), 624. https://doi.org/10.3390/atmos15060624