Zonons Are Solitons Produced by Rossby Wave Ringing
Abstract
:1. Introduction
2. The Regime of Zonostrophic Turbulence in Barotropic Simulations in Spherical Coordinate System
3. Rossby-Haurwitz Waves, Zonons, and Solitons
3.1. Flows on the Surface of a Rotating Sphere, the Mercator Projection, and the KdV Equation
3.2. Solitary Rossby Waves in Spherical Coordinates
3.3. Mean Zonal Velocity, Eigenfunctions, and Eigenvalues
3.4. Numerical Simulations: Zonons and Eddies
3.5. Hovmöller Diagrams
4. Zonons in the Atmospheres of Jupiter and Saturn
4.1. A Brief Taxonomy of Jupiter’s Eddies
4.2. Jupiter: Eddies or Zonons?
4.3. A Brief Taxonomy of Saturn’s Eddies
4.4. Saturn: Eddies or Zonons?
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salmon, R.; Pizzo, N. Two-Dimensional Flow on the Sphere. Atmosphere 2023, 14, 747. [Google Scholar] [CrossRef]
- Herring, J.; Orszag, S.; Kraichnan, R.; Fox, D. Decay of two-dimensional homogeneous turbulence. J. Fluid Mech. 1974, 66, 417–444. [Google Scholar] [CrossRef]
- Herring, J.R. On the Statistical Theory of Two-Dimensional Topographic Turbulence. J. Atmos. Sci. 1977, 34, 1731–1750. [Google Scholar] [CrossRef]
- Herring, J.R. Statistical theory of quasi-geostrophic turbulence. J. Atmos. Sci. 1980, 37, 969–977. [Google Scholar] [CrossRef]
- Galperin, B.; Sukoriansky, S. Zonostrophic turbulence. Phys. Scr. 2008, T132, 014034. [Google Scholar] [CrossRef]
- Galperin, B.; Sukoriansky, S.; Young, R.M.B.; Chemke, R.; Kaspi, Y.; Read, P.L.; Dikovskaya, N. Barotropic and Zonostrophic Turbulence. In Zonal Jets: Phenomenology, Genesis, and Physics; Galperin, B., Read, P.L., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 220–237. [Google Scholar] [CrossRef]
- Chekhlov, A.; Orszag, S.; Sukoriansky, S.; Galperin, B.; Staroselsky, I. The effect of small-scale forcing on large-scale structures in two-dimensional flows. Phys. D 1996, 98, 321–334. [Google Scholar] [CrossRef]
- Huang, H.P.; Robinson, W. Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci. 1998, 55, 611–632. [Google Scholar] [CrossRef]
- Galperin, B.; Read, P.L. (Eds.) Zonal Jets: Phenomenology, Genesis, and Physics; Cambridge University Press: Cambridge, UK, 2019; p. 504. [Google Scholar] [CrossRef]
- Sukoriansky, S.; Dikovskaya, N.; Galperin, B. Nonlinear waves in zonostrophic turbulence. Phys. Rev. Lett. 2008, 101, 178501. [Google Scholar] [CrossRef]
- Sukoriansky, S.; Dikovskaya, N.; Grimshaw, R.; Galperin, B. Rossby waves and zonons in zonostrophic turbulence. AIP Conf. Proc. 2012, 1439, 111–122. [Google Scholar] [CrossRef]
- Péronne, E.; Chuecos, N.; Thevenard, L.; Perrin, B. Acoustic solitons: A robust tool to investigate the generation and detection of ultrafast acoustic waves. Phys. Rev. B 2017, 95, 064306. [Google Scholar] [CrossRef]
- Sakazaki, T.; Hamilton, K. An Array of Ringing Global Free Modes Discovered in Tropical Surface Pressure Data. J. Atmos. Sci. 2020, 77, 2519–2539. [Google Scholar] [CrossRef]
- Long, R. Solitary waves in the westerlies. J. Atmos. Sci. 1964, 21, 197–200. [Google Scholar] [CrossRef]
- Benney, D. Long nonlinear waves in fluid flows. J. Math. Phys. 1966, 45, 52–63. [Google Scholar] [CrossRef]
- Redekopp, L. On the theory of solitary Rossby waves. J. Fluid Mech. 1977, 82, 725–745. [Google Scholar] [CrossRef]
- Redekopp, L.; Weidman, P. Solitary Rossby waves in zonal shear flows and their interactions. J. Atmos. Sci. 1978, 35, 790–804. [Google Scholar] [CrossRef]
- Wadati, M. The modified Korteweg–de Vries equation. J. Phys. Soc. Jpn. 1973, 34, 1289–1296. [Google Scholar] [CrossRef]
- Boyd, J. Equatorial soliton waves, Part 1: Rossby solitons. J. Phys. Oceanogr. 1980, 10, 1699–1717. [Google Scholar] [CrossRef]
- Boyd, J. The nonlinear equatorial Kelvin wave. J. Phys. Oceanogr. 1980, 10, 1–11. [Google Scholar] [CrossRef]
- Espa, S.; Cabanes, S.; King, G.P.; Nitto, G.D.; Galperin, B. Eddy–wave duality in a rotating flow. Phys. Fluids 2020, 32, 076604. [Google Scholar] [CrossRef]
- Galperin, B.; Sukoriansky, S.; Espa, S.; Lacorata, G.; Dikovskaya, N.; Hoemann, J. Turbulence, Diffusion and Mixing Barriers in Flows with Zonal Jets. In Zonal Jets: Phenomenology, Genesis, and Physics; Galperin, B., Read, P.L., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 450–460. [Google Scholar] [CrossRef]
- Limaye, S.S. Jupiter: New estimates of the mean zonal flow at the cloud level. Icarus 1986, 65, 335–352. [Google Scholar] [CrossRef]
- Humphreys, T.; Marcus, P.S. Vortex street dynamics: The selection mechanism for the areas and locations of Jupiter’s vortices. J. Atmos. Sci. 2007, 64, 1318–1333. [Google Scholar] [CrossRef]
- Dritschel, G.; McIntyre, M.E. Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 2008, 65, 855–874. [Google Scholar] [CrossRef]
- Galperin, B.; Young, R.; Sukoriansky, S.; Dikovskaya, N.; Read, P.; Lancaster, A.; Armstrong, D. Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus 2014, 229, 295–320. [Google Scholar] [CrossRef]
- Alexakis, A.; Biferale, L. Cascades and transitions in turbulent flows. Phys. Rep. 2018, 767, 1–101. [Google Scholar]
- Ingersoll, A.P. Cassini exploration of the planet Saturn: A comprehensive review. Space Sci. Rev. 2020, 216, 122. [Google Scholar] [CrossRef] [PubMed]
- Trammell, J.; Li, L.; Jiang, X.; Smith, M.; Hörst, S.; Vasavada, A. The global vortex analysis of Jupiter and Saturn based on Cassini imaging science subsystem. Icarus 2014, 242, 122–129. [Google Scholar] [CrossRef]
- Li, L.; Ingersoll, A.P.; Vasavada, A.R.; Porco, C.C.; Del Genio, A.D.; Ewald, S.P. Life cycles of spots on Jupiter from Cassini images. Icarus 2004, 172, 9–23. [Google Scholar] [CrossRef]
- Legarreta, J.; Sánchez-Lavega, A. Vertical structure of Jupiter’s troposphere from nonlinear simulations of long-lived vortices. Icarus 2008, 196, 184–201. [Google Scholar] [CrossRef]
- Cosentino, G.; Simon, A.; Morales-Juberias, R.; Sayanagi, K.M. Observations and numerical modeling of the Jovian Ribbon. Astrophys. J. 2015, 810, L10. [Google Scholar] [CrossRef]
- Ingersoll, A.P.; Beebe, R.F.; Mitchell, J.L.; Garneau, G.W.; Yagi, G.M.; Müller, J.P. Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res. 1981, A86, 8733–8743. [Google Scholar] [CrossRef]
- Vasavada, A.R.; Hörst, S.M.; Kennedy, M.R.; Ingersoll, A.P.; Porco, C.C.; Del Genio, A.D.; West, R.A. Cassini imaging of Saturn: Southern hemisphere winds and vortices. J. Geophys. Res. 2006, 111, E05004. [Google Scholar] [CrossRef]
- Sayanagi, K.M.; Dyudina, U.A.; Ewald, S.P.; Muro, G.D.; Ingersoll, A.P. Cassini ISS observation of Saturn’s string of pearls. Icarus 2014, 229, 170–180. [Google Scholar] [CrossRef]
- Qiao, L.; Weisberg, R.H. Tropical instability wave kinematics: Observations from the tropical instability wave experiment. J. Geophys. Res. Ocean. 1995, 100, 8677–8693. [Google Scholar] [CrossRef]
- Chelton, D.B.; Wentz, F.J.; Gentemann, C.L.; de Szoeke, R.A.; Schla, M.G. Satellite microwave SST observations of transequatorial tropical instability waves. Geophys. Res. Lett. 2000, 27, 1239–1242. [Google Scholar] [CrossRef]
- Contreras, F. Long-term observations of tropical instability waves. J. Phys. Oceanogr. 2002, 32, 2715–2722. [Google Scholar] [CrossRef]
- Galperin, B.; Hoemann, J.; Espa, S.; DiNitto, G.; Lacorata, G. Anisotropic macroturbulence and diffusion associated with a westward zonal jet—From laboratory to planetary atmospheres and oceans. Phys. Rev. E 2016, 94, 063102. [Google Scholar] [CrossRef] [PubMed]
- Galperin, B.; Hoemann, J.; Espa, S.; Di Nitto, G. Anisotropic turbulence and Rossby waves in an easterly jet—An experimental study. Geophys. Res. Lett. 2014, 41, 6237–6243. [Google Scholar] [CrossRef]
- Thorpe, S. The Turbulent Ocean; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Cabanes, S.; Espa, S.; Galperin, B.; Young, R.M.B.; Read, P.L. Revealing the intensity of turbulent energy transfer in planetary atmospheres. Geophys. Res. Lett. 2020, 47, e2020GL088685. [Google Scholar] [CrossRef]
- Lenouo, A.; Nkankam, F.K. Solitary Rossby Waves in the Lower Tropical Troposphere. ISRN Atmos. Sci. 2013, 2013, 124965. [Google Scholar] [CrossRef]
- Dunkerton, T.J.; Montgomery, M.T.; Wang, Z. Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys. 2009, 9, 5587–5646. [Google Scholar] [CrossRef]
- Maxworthy, T.; Redekopp, L. A solitary wave theory of the Great Red Spot and other features in the Jovian atmosphere. Icarus 1976, 29, 261–271. [Google Scholar] [CrossRef]
- Marcus, P. Jupiter’s Great Red Spot and other vortices. Annu. Rev. Astron. Astrophys. 1993, 31, 523–573. [Google Scholar] [CrossRef]
- Boyd, J.P. Chapter 6. Planetary solitary waves. In WIT Transactions on State of the Art in Science and Engineering; WIT Press: Southampton, UK, 2007; Volume 9. [Google Scholar] [CrossRef]
- Holton, J. Dynamic Meteorology, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Sánchez-Lavega, A. An Introduction to Planetary Atmospheres; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Zaqarashvili, T.V.; Albekioni, M.; Ballester, J.L.; Bekki, Y.; Biancofiore, L.; Birch, A.C.; Dikpati, M.; Gizon, L.; Gurgenashvili, E.; Heifetz, E.; et al. Rossby Waves in Astrophysics. Space Sci. Rev. 2021, 217, 1–93. [Google Scholar] [CrossRef]
- Pedlosky, J. Geophysical Fluid Dynamics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Huang, H.P.; Galperin, B.; Sukoriansky, S. Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Phys. Fluids 2001, 13, 225–240. [Google Scholar] [CrossRef]
- Vallis, G. Atmospheric and Oceanic Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Sukoriansky, S.; Dikovskaya, N.; Galperin, B. On the ‘arrest’ of the inverse energy cascade and the Rhines scale. J. Atmos. Sci. 2007, 64, 3312–3327. [Google Scholar] [CrossRef]
- Boer, G. Homogeneous and isotropic turbulence on the sphere. J. Atmos. Sci. 1983, 40, 154–163. [Google Scholar] [CrossRef]
- Boer, G.; Shepherd, T. Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci. 1983, 40, 164–184. [Google Scholar] [CrossRef]
- Sukoriansky, S.; Galperin, B.; Dikovskaya, N. Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets. Phys. Rev. Lett. 2002, 89, 124501. [Google Scholar] [CrossRef] [PubMed]
- Kraichnan, R. Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 1971, 47, 525–535. [Google Scholar] [CrossRef]
- Galperin, B.; Sukoriansky, S.; Dikovskaya, N.; Read, P.; Yamazaki, Y.; Wordsworth, R. Anisotropic turbulence and zonal jets in rotating flows with a β-effect. Nonlinear Proc. Geophys. 2006, 13, 83–98. [Google Scholar] [CrossRef]
- Lemasquerier, D.; Favier, B.; Le Bars, M. Zonal jets experiments in the gas giants’ zonostrophic regime. Icarus 2023, 390, 115292. [Google Scholar] [CrossRef]
- Galperin, B.; Sukoriansky, S.; Huang, H.P. Universal n−5 spectrum of zonal flows on giant planets. Phys. Fluids 2001, 13, 1545–1548. [Google Scholar] [CrossRef]
- Li, L.; Ingersoll, A.; Huang, X. Interaction of moist convection with zonal jets on Jupiter and Saturn. Icarus 2006, 180, 113–123. [Google Scholar] [CrossRef]
- Polito, S.; Sato, O.T. Do eddies ride on Rossby waves? J. Geophys. Res. Ocean. 2015, 120, 5417–5435. [Google Scholar] [CrossRef]
- Daners, D. The Mercator and Stereographic Projections, and Many in Between. Amer. Math. Mon. 2012, 119, 199–210. [Google Scholar] [CrossRef]
- Gudermannian Function. In CRC Standard Mathematical Tables and Formulae, 31st ed.; Zwillinger, D. (Ed.) CRC Press: Boca Raton, FL, USA, 1995; pp. 530–532. [Google Scholar]
- Crighton, D. Applications of KdV. Acta Applic. Math. 1995, 39, 39–67. [Google Scholar] [CrossRef]
- Hovmöller, E. The Trough-and-Ridge diagram. Tellus 1949, 1, 62–66. [Google Scholar] [CrossRef]
- Read, P.L. The Dynamics of Jupiter’s and Saturn’s Weather Layers: A Synthesis After Cassini and Juno. Annu. Rev. Fluid Mech. 2024, 56, 271–293. [Google Scholar] [CrossRef]
- Ingersoll, A.P.; Dowling, T.E.; Gierasch, P.J.; Orton, G.S.; Read, P.L.; Sánchez-Lavega, A.; Showman, A.P.; Simon-Miller, A.A.; Vasavada, A.R. Dynamics of Jupiter’s atmosphere. In Jupiter: The Planet, Satellites and Magnetosphere; Bagenal, F., Dowling, T.E., McKinnon, W.B., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 105–128. [Google Scholar]
- Vasavada, A.R.; Showman, A.P. Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys. 2005, 68, 1935–1996. [Google Scholar] [CrossRef]
- Del Genio, A.D.; Achterberg, R.K.; Baines, K.H.; Flasar, F.M.; Read, P.L.; Sánchez-Lavega, A.; Showman, A.P. Saturn atmospheric structure and dynamics. In Saturn from Cassini–Huygens; Dougherty, M.K., Esposito, L.W., Krimigis, S.M., Eds.; Springer: London, UK, 2009; pp. 113–159. [Google Scholar] [CrossRef]
- Sayanagi, K.M.; Baines, K.H.; Dyudina, U.A.; Fletcher, L.N.; Sánchez-Lavega, A.; West, R.A. Saturn’s polar atmosphere. In Saturn in the 21st Century; Baines, K.H., Flasar, F.M., Krupp, N., Stallard, T.E., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 295–336. [Google Scholar]
- Showman, A.P.; Ingersoll, A.P.; Achterberg, R.; Kaspi, Y. The global atmospheric circulation of Saturn. In Saturn in the 21st Century; Baines, K.H., Flasar, F.M., Krupp, N., Stallard, T.E., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 337–376. [Google Scholar]
- García-Melendo, E.; Sánchez-Lavega, A. A study of the stability of Jovian zonal winds from HST Images: 1995–2000. Icarus 2001, 152, 316–330. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; Rojas, J.F.; Sada, P.V. Saturn’s zonal winds at cloud level. Icarus 2000, 147, 405–420. [Google Scholar] [CrossRef]
- Morales-Juberías, R.; Simon, A.A.; Cosentino, R.G. Analysis of the long-term drift rates and oscillations of Jupiter’s largest vortices. Icarus 2022, 372, 114732. [Google Scholar] [CrossRef]
- Marcus, P.S. Prediction of a global climate change on Jupiter. Nature 2004, 428, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.H. The Giant Planet Jupiter; Cambridge University Press: Cambridge, UK, 1995; Volume 6. [Google Scholar]
- Sánchez-Lavega, A.; Rojas, J.F.; Hueso, R.; Lecacheux, J.; Colas, F.; Acarreta, J.R.; Miyazaki, I.; Parker, D. Interaction of Jovian white ovals BC and DE in 1998 from Earth-based observations in the visual range. Icarus 1999, 142, 116–124. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; Orton, G.S.; Morales, R.; Lecacheux, J.; Colas, F.; Fisher, B.; Fukumura-Sawada, P.; Golisch, W.; Griep, D.; Kaminski, C.; et al. The merger of two giant anticyclones in the atmosphere of Jupiter. Icarus 2001, 149, 491–495. [Google Scholar] [CrossRef]
- Barrado-Izagirre, N.; Legarreta, J.; Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Iñurrigarro, P.; Rojas, J.F.; Mendikoa, I.; Ordonez-Etxeberria, I.; the IOPW Team. Jupiter’s third largest and longest-lived oval: Color changes and dynamics. Icarus 2021, 361, 114394. [Google Scholar] [CrossRef]
- Hueso, R.; Sánchez-Lavega, A.; Fouchet, T.; de Pater, I.; Nano, A.A.; Fletcher, L.N.; Wong, M.H.; Rodríguez-Ovalle, P.; Sromovsky, L.A.; Fry, P.M.; et al. An intense narrow equatorial jet in Jupiter’s lower stratosphere observed by JWST. Nat. Astron. 2023. [Google Scholar] [CrossRef]
- Aurnou, J.M.; Heimpel, M.H. Zonal jets in rotating convection with mixed mechanical boundary conditions. Icarus 2004, 169, 492–498. [Google Scholar] [CrossRef]
- Sayanagi, K.M.; Showman, A.P. Effects of a large convective storm on Saturn’s equatorial jet. Icarus 2007, 187, 520–539. [Google Scholar] [CrossRef]
- Showman, A.P. Numerical simulations of forced shallow-water turbulence: Effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci. 2007, 64, 3132–3157. [Google Scholar] [CrossRef]
- Palotai, C.; Brueshaber, S.; Sankar, R.; Sayanagi, K. Moist convection in the giant planet atmospheres. Remote Sens. 2023, 15, 219. [Google Scholar] [CrossRef]
- Read, P.L.; Dowling, T.E.; Schubert, G. Saturn’s rotation period from its atmospheric planetary-wave configuration. Nature 2009, 460, 608–610. [Google Scholar] [CrossRef]
- Del Genio, A.D.; Barbara, J.M.; Ferrier, J.; Ingersoll, A.P.; West, R.A.; Vasavada, A.R.; Spitale, J.; Porco, C.C. Saturn eddy momentum fluxes and convection: First estimates from Cassini images. Icarus 2007, 189, 479–492. [Google Scholar] [CrossRef]
- Porco, C.C.; Baker, E.; Barbara, J.; Beurle, K.; Brahic, A.; Burns, J.A.; Charnoz, S.; Cooper, N.; Dawson, D.D.; Del Genio, A.D.; et al. Cassini imaging science: Initial results on Saturn’s atmosphere. Science 2005, 307, 1243–1247. [Google Scholar] [CrossRef] [PubMed]
- Dyudina, U.A.; Ingersoll, A.P.; Ewald, S.P.; Porco, C.C.; Fischer, G.; Kurth, W.; Desch, M.; Del Genio, A.; Barbara, J.; Ferrier, J. Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus 2007, 190, 545–555. [Google Scholar] [CrossRef]
- del Río-Gaztelurrutia, T.; Legarreta, J.; Hueso, R.; Pérez-Hoyos, S.; Sánchez-Lavega, A. A long-lived cyclone in Saturn’s atmosphere: Observations and models. Icarus 2010, 209, 665–681. [Google Scholar] [CrossRef]
- Gunnarson, J.L.; Sayanagi, K.M.; Fischer, G.; Barry, T.; Wesley, A.; Dyudina, U.A.; Ewald, S.P.; Ingersoll, A.P. Multiple convective storms within a single cyclone on Saturn. Icarus 2023, 389, 115228. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; Lecacheux, J.; Gomez, J.M.; Colas, F.; Laques, P.; Noll, K.; Gilmore, D.; Miyazaki, I.; Parker, D. Large-Scale Storms in Saturn’s Atmosphere During 1994. Science 1996, 271, 631–634. [Google Scholar] [CrossRef]
- Sayanagi, K.M.; Dyudina, U.A.; Ewald, S.P.; Fischer, G.; Ingersoll, A.P.; Kurth, W.S.; Muro, G.D.; Porco, C.C.; West, R.A. Dynamics of Saturn’s great storm of 2010–2011 from Cassini ISS and RPWS. Icarus 2013, 223, 460–478. [Google Scholar] [CrossRef]
- García-Melendo, E.; Sánchez-Lavega, A. Shallow water simulations of Saturn’s giant storms at different latitudes. Icarus 2017, 286, 241–260. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A. Saturn’s Great White Spots. Chaos 1994, 4, 341–353. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; García-Melendo, E.; Pérez-Hoyos, S.; Hueso, R.; Wong, M.H.; Simon, A.; Sanz-Requena, J.F.; Antuñano, A.; Barrado-Izagirre, N.; Garate-Lopez, I.; et al. An enduring rapidly moving storm as a guide to Saturn’s Equatorial jet’s complex structure. Nat. Commun. 2016, 7, 13262. [Google Scholar] [CrossRef] [PubMed]
- García-Melendo, E.; Pérez-Hoyos, S.; Sánchez-Lavega, A.; Hueso, R. Saturn’s zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus 2011, 215, 62–74. [Google Scholar] [CrossRef]
- Orton, G.S.; Yanamandra-Fisher, P.A.; Fisher, B.M.; Friedson, A.J.; Parrish, P.D.; Nelson, J.F.; Bauermeister, A.S.; Fletcher, L.; Gezari, D.Y.; Varosi, F.; et al. Semi-annual oscillations in Saturn’s low-latitude stratospheric temperatures. Nature 2008, 453, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Fouchet, T.; Guerlet, S.; Strobel, D.F.; Simon-Miller, A.A.; Bézard, B.; Flasar, F.M. An equatorial oscillation in Saturn’s middle atmosphere. Nature 2008, 453, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Cabanes, S.; Gastine, T.; Fournier, A. Zonostrophic turbulence in the subsurface oceans of the Jovian and Saturnian moons. Icarus 2024, 415, 116047. [Google Scholar] [CrossRef]
- Kundt, W.; Lüttgens, G. Rings around planets, atmospheric super-rotation, and their great spots. Astrophys. Space Sci. 1998, 257, 33–47. [Google Scholar] [CrossRef]
- Imamura, T.; Mitchell, J.; Lebonnois, S.; Kaspi, Y.; Showman, A.P.; Korablev, O. Superrotation in Planetary Atmospheres. Space Sci. Rev. 2020, 216, 87. [Google Scholar] [CrossRef]
- Chelton, D.; Schlax, M.; Samelson, R.; de Szoeke, R. Global observation of large oceanic eddies. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Chelton, D.; Schlax, M.; Samelson, R. Global observations of nonlinear mesoscale eddies. Progr. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Early, J.; Samelson, R.; Chelton, D. The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr. 2011, 41, 1535–1555. [Google Scholar] [CrossRef]
- Wunsch, C. A time-average ocean: Thermal wind and flow spirals. Prog. Oceanogr. 2024, 221, 103206. [Google Scholar] [CrossRef]
i or n | Rotating Sphere | ||
---|---|---|---|
Relative Difference [%] | |||
1 | |||
2 | |||
3 | |||
4 | |||
5 | 11 | ||
6 | |||
7 | 2 | ||
8 | |||
9 | 0 | ||
10 | 0 | ||
11 |
Jupiter | |||
---|---|---|---|
or | Relative | ||
ms−1 | ms−1 | Difference [%] | |
17 | |||
18 | |||
19 | |||
20 | |||
21 | |||
22 | |||
23 | |||
24 | |||
25 |
System III | System IIIw | |||||
---|---|---|---|---|---|---|
or | Relative | Relative | ||||
ms−1 | ms−1 | Difference [%] | ms−1 | ms−1 | Difference [%] | |
9 | ||||||
10 | ||||||
11 | ||||||
12 | ||||||
13 | ||||||
14 | ||||||
15 | ||||||
16 | ||||||
17 | ||||||
18 | ||||||
19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, N.; Galperin, B.; Sukoriansky, S. Zonons Are Solitons Produced by Rossby Wave Ringing. Atmosphere 2024, 15, 711. https://doi.org/10.3390/atmos15060711
Cohen N, Galperin B, Sukoriansky S. Zonons Are Solitons Produced by Rossby Wave Ringing. Atmosphere. 2024; 15(6):711. https://doi.org/10.3390/atmos15060711
Chicago/Turabian StyleCohen, Nimrod, Boris Galperin, and Semion Sukoriansky. 2024. "Zonons Are Solitons Produced by Rossby Wave Ringing" Atmosphere 15, no. 6: 711. https://doi.org/10.3390/atmos15060711
APA StyleCohen, N., Galperin, B., & Sukoriansky, S. (2024). Zonons Are Solitons Produced by Rossby Wave Ringing. Atmosphere, 15(6), 711. https://doi.org/10.3390/atmos15060711