Reinterpreting Trends: The Impact of Methodological Changes on Reported Sea Salt Aerosol Levels
Abstract
:1. Introduction
2. Methodology
2.1. Network Description and Sampling
2.2. Sea Salt Aerosol Calculation from Tracers
2.3. Study Area
3. Results
3.1. Sea Salt Aerosol Trend
3.1.1. Percentage of SSAs in the Total PM2.5 Speciation
3.1.2. Annual Average of SSA Concentrations
3.2. Domination of Chloride over Chlorine Measurements
4. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley Sons: Hoboken, NJ, USA, 2016; p. 49. [Google Scholar]
- Crawford, J.; Cohen, D.D.; Chambers, S.D.; Williams, A.G.; Atanacio, A. Impact of aerosols of sea salt origin in a coastal basin: Sydney, Australia. Atmos. Environ. 2019, 207, 52–62. [Google Scholar] [CrossRef]
- Feng, L.; Shen, H.; Zhu, Y.; Gao, H.; Yao, X. Insight into generation and evolution of sea-salt aerosols from field measurements in diversified marine and coastal atmospheres. Sci. Rep. 2017, 7, 41260. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.; Miller, T.; Bates, T.; Ogren, J.; Andrews, E.; Shaw, G. A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. J. Geophys. Res. Atmos. 2002, 107, AAC–8. [Google Scholar] [CrossRef]
- Nakajima, T.; Higurashi, A.; Kawamoto, K.; Penner, J.E. A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett. 2001, 28, 1171–1174. [Google Scholar] [CrossRef]
- White, W.H. Chemical markers for sea salt in IMPROVE aerosol data. Atmos. Environ. 2008, 42, 261–274. [Google Scholar] [CrossRef]
- Millero, F. Physicochemical Controls. Ocean. Mar. Geochem. 2006, 6, 1. [Google Scholar]
- Pakkanen, T.A. Study of formation of coarse particle nitrate aerosol. Atmos. Environ. 1996, 30, 2475–2482. [Google Scholar] [CrossRef]
- Bertram, T.H.; Cochran, R.E.; Grassian, V.H.; Stone, E.A. Sea spray aerosol chemical composition: Elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions. Chem. Soc. Rev. 2018, 47, 2374–2400. [Google Scholar] [CrossRef] [PubMed]
- Keene, W.C.; Pszenny, A.A.; Jacob, D.J.; Duce, R.A.; Galloway, J.N.; Schultz-Tokos, J.J.; Sievering, H.; Boatman, J.F. The geochemical cycling of reactive chlorine through the marine troposphere. Glob. Biogeochem. Cycles 1990, 4, 407–430. [Google Scholar] [CrossRef]
- Hopkins, R.J.; Desyaterik, Y.; Tivanski, A.V.; Zaveri, R.A.; Berkowitz, C.M.; Tyliszczak, T.; Gilles, M.K.; Laskin, A. Chemical speciation of sulfur in marine cloud droplets and particles: Analysis of individual particles from the marine boundary layer over the California current. J. Geophys. Res. Atmos. 2008, 113, D04209. [Google Scholar] [CrossRef]
- Malm, W.C.; Schichtel, B.A.; Pitchford, M.L.; Ashbaugh, L.L.; Eldred, R.A. Spatial and monthly trends in speciated fine particle concentration in the United States. J. Geophys. Res. Atmos. 2004, 109, 1–22. [Google Scholar] [CrossRef]
- Flanagan, J.B.; Jayanty, R.K.; Rickman, E.E., Jr.; Peterson, M.R. PM2. 5 Speciation Trends Network: Evaluation of whole-system uncertainties using data from sites with collocated samplers. J. Air Waste Manag. Assoc. 2006, 56, 492–499. [Google Scholar] [CrossRef]
- Solomon, P.A.; Crumpler, D.; Flanagan, J.B.; Jayanty, R.; Rickman, E.E.; McDade, C.E. US national PM2. 5 chemical speciation monitoring networks—CSN and IMPROVE: Description of networks. J. Air Waste Manag. Assoc. 2014, 64, 1410–1438. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Chen, L.W.; Rice, J.; Frank, N.H. Quantification of PM 2.5 organic carbon sampling artifacts in US networks. Atmos. Chem. Phys. 2010, 10, 5223–5239. [Google Scholar] [CrossRef]
- Gutknecht, W.; Flanagan, J.; McWilliams, A.; Jayanty, R.K.; Kellogg, R.; Rice, J.; Duda, P.; Sarver, R.H. Harmonization of uncertainties of X-ray fluorescence data for PM2. 5 air filter analysis. J. Air Waste Manag. Assoc. 2010, 60, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Spada, N.J.; Hyslop, N.P. Comparison of elemental and organic carbon measurements between IMPROVE and CSN before and after method transitions. Atmos. Environ. 2018, 178, 173–180. [Google Scholar] [CrossRef]
- Warneck, P. Chemistry of the Natural Atmosphere; Elsevier: Amsterdam, The Netherlands, 1999; Volume 71. [Google Scholar]
- Chen, L.W.A.; Doddridge, B.G.; Dickerson, R.R.; Chow, J.C.; Henry, R.C. Origins of fine aerosol mass in the Baltimore–Washington corridor: Implications from observation, factor analysis, and ensemble air parcel back trajectories. Atmos. Environ. 2002, 36, 4541–4554. [Google Scholar] [CrossRef]
- Dreessen, J.; Ren, X.; Gardner, D.; Green, K.; Stratton, P.; Sullivan, J.T.; Delgado, R.; Dickerson, R.R.; Woodman, M.; Berkoff, T.; et al. VOC and trace gas measurements and ozone chemistry over the Chesapeake Bay during OWLETS-2, 2018. J. Air Waste Manag. Assoc. 2023, 73, 178–199. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency. Air Quality System Data Mart. Available online: https://www.epa.gov/ttn/airs/aqsdatamart (accessed on 30 March 2024).
- Calvert, J.G.; Orlando, J.J.; Stockwell, W.R.; Wallington, T.J. The Mechanisms of Reactions Influencing Atmospheric Ozone; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
Element | Contribution (wt. %) |
---|---|
Cl | 55.4 |
Na | 30.8 |
Mg | 3.8 |
S | 2.6 |
K | 1.1 |
Ca | 1.1 |
Other elements | 5.2 |
Year | DC | Beltsville | Essex | Madison County | Piney Run |
---|---|---|---|---|---|
2005 | 0.4 | 0.5 | 0.3 | 0.7 | 0.4 |
2006 | 0.5 | 0.4 | 0.3 | 0.8 | 0.4 |
2007 | 0.7 | 0.5 | 0.8 | 0.8 | 0.4 |
2008 | 0.5 | 0.4 | 0.6 | 0.9 | 0.5 |
2009 | 0.5 | 0.3 | 0.6 | 0.9 | 0.5 |
2010 | 0.3 | 0.3 | 0.6 | 0.3 | 0.1 |
2011 | 0.3 | 0.3 | 0.5 | 1.4 | 1.1 |
2012 | 0.3 | 0.2 | 0.3 | 1.1 | 0.8 |
2013 | 0.4 | 0.3 | 0.6 | 1.5 | 1 |
2014 | 0.6 | 0.8 | 0.5 | 1.2 | 0.8 |
2015 | 0.8 | 1.3 | 1.3 | 1.1 | 1 |
2016 | 0.1 | 0.2 | 0.3 | 1.1 | 1 |
2017 | 6.5 | 2.7 | 2.7 | 1.2 | 0.9 |
2018 | 2.8 | 2.1 | 2.6 | 1.4 | 1.2 |
2019 | 2.1 | 1.8 | 2.6 | 1.5 | 1.3 |
2020 | 2.6 | 2.4 | 3.3 | 1.8 | 2.2 |
2021 | 2 | 1.8 | 2.5 | 1.4 | 0.8 |
Year | Annual Avg. Chlorine (μg m−3) | Annual Avg. Chloride (μg m−3) |
---|---|---|
2017 | 0.007 | 0.082 |
2018 | 0.008 | 0.080 |
2019 | 0.011 | 0.084 |
2020 | 0.011 | 0.100 |
2021 | 0.008 | 0.086 |
Chlorine | ||||||
---|---|---|---|---|---|---|
Year | Number of Values | Sum | Mean | Std. Deviation | Std. Error of Mean | Coefficient of Variation (%) |
2017 | 105 | 0.754 | 0.0071 | 0.0325 | 0.0031 | 453.2 |
2018 | 117 | 0.902 | 0.0077 | 0.0259 | 0.0024 | 337.1 |
2019 | 116 | 1.313 | 0.0113 | 0.0521 | 0.0048 | 460.5 |
2020 | 118 | 1.348 | 0.0114 | 0.0525 | 0.0048 | 459.6 |
2021 | 143 | 1.131 | 0.0079 | 0.0299 | 0.0025 | 378 |
Chloride | ||||||
Year | Number of Values | Sum | Mean | Std. Deviation | Std. Error of Mean | Coefficient of Variation (%) |
2017 | 105 | 8.569 | 0.0816 | 0.0923 | 0.009 | 113.1 |
2018 | 117 | 9.388 | 0.0802 | 0.0958 | 0.0088 | 119.5 |
2019 | 116 | 9.708 | 0.0836 | 0.0949 | 0.0088 | 113.5 |
2020 | 118 | 11.8 | 0.0999 | 0.1807 | 0.0166 | 180.7 |
2021 | 143 | 12.31 | 0.0861 | 0.0819 | 0.0068 | 95.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karle, N.N.; Sakai, R.K.; Chiao, S.; Fitzgerald, R.M.; Stockwell, W.R. Reinterpreting Trends: The Impact of Methodological Changes on Reported Sea Salt Aerosol Levels. Atmosphere 2024, 15, 740. https://doi.org/10.3390/atmos15070740
Karle NN, Sakai RK, Chiao S, Fitzgerald RM, Stockwell WR. Reinterpreting Trends: The Impact of Methodological Changes on Reported Sea Salt Aerosol Levels. Atmosphere. 2024; 15(7):740. https://doi.org/10.3390/atmos15070740
Chicago/Turabian StyleKarle, Nakul N., Ricardo K. Sakai, Sen Chiao, Rosa M. Fitzgerald, and William R. Stockwell. 2024. "Reinterpreting Trends: The Impact of Methodological Changes on Reported Sea Salt Aerosol Levels" Atmosphere 15, no. 7: 740. https://doi.org/10.3390/atmos15070740
APA StyleKarle, N. N., Sakai, R. K., Chiao, S., Fitzgerald, R. M., & Stockwell, W. R. (2024). Reinterpreting Trends: The Impact of Methodological Changes on Reported Sea Salt Aerosol Levels. Atmosphere, 15(7), 740. https://doi.org/10.3390/atmos15070740