Evaluating the Conservation Status and Effectiveness of Multi-Type Protected Areas for Carbon Sequestration in the Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Data Sources
2.2.2. Selected Protected Areas
2.2.3. Carbon Sequestration
2.2.4. Conservation Effectiveness
2.2.5. Impact Factors
3. Results
3.1. Conservation Status
3.2. Conservation Effectiveness
3.3. Main Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almond, R.; Grooten, M.; Juffe Bignoli, D.; Petersen, T. Living Planet Report 2022: Building a Nature-Positive Society; WWF: Gland, Switzerland, 2022. [Google Scholar]
- Tong, S.; Bambrick, H.; Beggs, P.J.; Chen, L.; Hu, Y.; Ma, W.; Steffen, W.; Tan, J. Current and Future Threats to Human Health in the Anthropocene. Environ. Int. 2022, 158, 106892. [Google Scholar] [CrossRef]
- Baste, I.A.; Watson, R.T. Tackling the Climate, Biodiversity and Pollution Emergencies by Making Peace with Nature 50 Years after the Stockholm Conference. Glob. Environ. Change 2022, 73, 102466. [Google Scholar] [CrossRef]
- Convention on Biological Diversity. Kunming-Montreal Global Biodiversity Framework; Convention on Biological Diversity: Montreal, QC, Canada, 2022. [Google Scholar]
- Guidebook for the Preparation of Science, Technology and Innovation (STI) for SDGs Roadmaps; United Nations Inter-Agency Task Team on Science, Technology and Innovation for the SDGs and European Coomission, Joint Research Centre: New York, NY, USA, 2021.
- United Nations Environment Programme. Global Climate Litigation Report: 2023 Status Review; United Nations Environment Programme: Nairobi, Kenya, 2023. [Google Scholar]
- Matocha, J.; Schroth, G.; Hills, T.; Hole, D. Integrating Climate Change Adaptation and Mitigation through Agroforestry and Ecosystem Conservation. In Agroforestry—The Future of Global Land Use; Nair, P.K.R., Garrity, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 105–126. ISBN 978-94-007-4676-3. [Google Scholar]
- Kabir, M.; Habiba, U.E.; Khan, W.; Shah, A.; Rahim, S.; los Rios-Escalante, P.R.D.; Farooqi, Z.-U.-R.; Ali, L.; Shafiq, M. Climate Change Due to Increasing Concentration of Carbon Dioxide and Its Impacts on Environment in 21st Century; A Mini Review. J. King Saud Univ. Sci. 2023, 35, 102693. [Google Scholar] [CrossRef]
- Jones, M.W.; Peters, G.P.; Gasser, T.; Andrew, R.M.; Schwingshackl, C.; Gütschow, J.; Houghton, R.A.; Friedlingstein, P.; Pongratz, J.; Le Quéré, C. National Contributions to Climate Change Due to Historical Emissions of Carbon Dioxide, Methane, and Nitrous Oxide since 1850. Sci. Data 2023, 10, 155. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Wigneron, J.-P.; Ciais, P.; Brandt, M.; Fan, L.; Li, X.; Crowell, S.; Wu, X.; Doughty, R.; et al. Carbon Loss from Forest Degradation Exceeds That from Deforestation in the Brazilian Amazon. Nat. Clim. Change 2021, 11, 442–448. [Google Scholar] [CrossRef]
- Li, Y.; Brando, P.M.; Morton, D.C.; Lawrence, D.M.; Yang, H.; Randerson, J.T. Deforestation-Induced Climate Change Reduces Carbon Storage in Remaining Tropical Forests. Nat. Commun. 2022, 13, 1964. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Wang, D.; Yang, L.; Wu, J.; Ziegler, A.D.; Liu, M.; Ciais, P.; Searchinger, T.D.; Yang, Z.-L.; Chen, D.; et al. Deforestation-Induced Warming over Tropical Mountain Regions Regulated by Elevation. Nat. Geosci. 2021, 14, 23–29. [Google Scholar] [CrossRef]
- Ivanova, I.M.; Cook, C.N. The Role of Privately Protected Areas in Achieving Biodiversity Representation within a National Protected Area Network. Conserv. Sci. Pract. 2020, 2, e307. [Google Scholar] [CrossRef]
- Arneth, A.; Leadley, P.; Claudet, J.; Coll, M.; Rondinini, C.; Rounsevell, M.D.A.; Shin, Y.; Alexander, P.; Fuchs, R. Making Protected Areas Effective for Biodiversity, Climate and Food. Glob. Change Biol. 2023, 29, 3883–3894. [Google Scholar] [CrossRef]
- Visconti, P.; Butchart, S.H.M.; Brooks, T.M.; Langhammer, P.F.; Marnewick, D.; Vergara, S.; Yanosky, A.; Watson, J.E.M. Protected Area Targets Post-2020. Science 2019, 364, 239–241. [Google Scholar] [CrossRef]
- Xu, X.; Huang, A.; Belle, E.; de Frenne, P.; Jia, G. Protected Areas Provide Thermal Buffer against Climate Change. Sci. Adv. 2022, 8, eabo0119. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yu, L.; Shen, X.; Hua, F.; Ma, K. Maximizing the Potential of Protected Areas for Biodiversity Conservation, Climate Refuge and Carbon Storage in the Face of Climate Change: A Case Study of Southwest China. Biol. Conserv. 2023, 284, 110213. [Google Scholar] [CrossRef]
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to Achieve a Carbon Neutral Society: A Review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef]
- Zhao, W. China’s Goal of Achieving Carbon Neutrality before 2060: Experts Explain How. Natl. Sci. Rev. 2022, 9, nwac115. [Google Scholar] [CrossRef]
- Shi, H.; Li, X.; Liu, X.; Wang, S.; Liu, X.; Zhang, H.; Tang, D.; Li, T. Global Protected Areas Boost the Carbon Sequestration Capacity: Evidences from Econometric Causal Analysis. Sci. Total Environ. 2020, 715, 137001. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fiankor, D.-D.D.; Kang, K.; Zhang, Q. Assessing the Role of Institutional Effectiveness on Carbon Sequestration: The Case of China’s Nature Reserve Policy. China Agric. Econ. Rev. 2023, 15, 777–794. [Google Scholar] [CrossRef]
- Huang, B. Improve Governance System of National Parks, Build the World’s Largest National Park System with High Quality. Bull. Chin. Acad. Sci. 2024, 39, 219–229. [Google Scholar]
- Tian, J.; Feng, C.; Fu, G.; Fan, L.; Wang, W. Contribution of Different Types of Terrestrial Protected Areas to Carbon Sequestration Services in China: 1980–2020. Front. Ecol. Evol. 2023, 11, 1074410. [Google Scholar] [CrossRef]
- Duncanson, L.; Liang, M.; Leitold, V.; Armston, J.; Krishna Moorthy, S.M.; Dubayah, R.; Costedoat, S.; Enquist, B.J.; Fatoyinbo, L.; Goetz, S.J.; et al. The Effectiveness of Global Protected Areas for Climate Change Mitigation. Nat. Commun. 2023, 14, 2908. [Google Scholar] [CrossRef]
- Cao, M. Conservation Effectiveness Assessment and Influencing Factors Analysis of National Nature Reserves in Oinling Mountains. Master’s Thesis, Chinese Research Academy of Environmental Sciences, Beijing, China, 2022. [Google Scholar]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S.; et al. Strengthening Protected Areas for Biodiversity and Ecosystem Services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Lü, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the Soil Erosion Control Service of Ecosystems Change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, X.; Tian, H.; Wu, X.; Gao, Z.; Feng, Y.; Piao, S.; Lv, N.; Pan, N.; Fu, B. Accelerated Increase in Vegetation Carbon Sequestration in China after 2010: A Turning Point Resulting from Climate and Human Interaction. Glob. Change Biol. 2021, 27, 5848–5864. [Google Scholar] [CrossRef] [PubMed]
- An, K.; Zhang, Y.; Liu, Y.; Huang, J.; Li, G. Construction of nature reserves and the effectiveness of habitat protection in the Loess Plateau. Shaanxi For. Sci. Technol. 2023, 51, 8–17. [Google Scholar]
- Yang, Y.; Zhang, P.; Wu, F.; Zhou, Y.; Song, Y.; Wang, Y.; An, S. The significance and countermeasures of vegelalion constmuction on the Loess Plateauto carbon neutrality. Acta Ecol. Sin. 2023, 43, 9071–9081. [Google Scholar] [CrossRef]
- Dang, X.; Wu, Y.; Liu, G.; Yang, Q.; Yu, X.; Jia, Y. Spatial-temporal changes of ecological footprint in the Loess Plateau after ecological construction between 1995 and 2010. Geogr. Res. 2018, 37, 761–771. [Google Scholar]
- National Development and Reform Commission. National Bureau of Statistics Accounting Specification of Total Value of Ecological Products; National Development and Reform Commission: Beijing, China, 2022.
- Fang, Z.; Xu, W.; Zhang, J.; Xiao, Y.; Zhang, L. Designing protected area systems in the Qinling Mountains based on biodiversity and ecosystem service evaluation. Acta Ecol. Sin. 2017, 37, 5334–5341. [Google Scholar]
- Tang, X.; Luan, X. Developing a nature protected area system composed mainly of national parks. For. Resour. Manag. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Tang, X.; Liu, Z.; Ma, W. A study on integration and optimization rules and paths for natural protected areas in China. For. Resour. Manag. 2020, 1–10. [Google Scholar] [CrossRef]
- Wang, W.; Li, J. In-situ conservation of biodiversity in China: Advances and prospects. Biodivers. Sci. 2021, 29, 133–149. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Isbell, F.; Arce-Plata, M.I.; di Marco, M.; Harfoot, M.; Johnson, J.; Lerman, S.B.; Miller, B.W.; Morelli, T.L.; Mori, A.S.; et al. Biodiversity Loss Reduces Global Terrestrial Carbon Storage. Nat. Commun. 2024, 15, 4354. [Google Scholar] [CrossRef]
- Chen, W.; Li, H. Growth potential of carbon sequestration and carbon sinks increase in forest and grass ecosystem in China. Sci. Technol. Rev. 2024, 42, 93–102. [Google Scholar]
- Zhang, X.; Jia, W.; Sun, Y.; Wang, F.; Miu, Y. Simulation of Spatial and Temporal Distribution of Forest Carbon Stocks in Long Time Series-Based on Remote Sensing and Deep Learning. Forests 2023, 14, 483. [Google Scholar] [CrossRef]
- Li, B.V.; Pimm, S.L. How China Expanded Its Protected Areas to Conserve Biodiversity. Curr. Biol. 2020, 30, R1334–R1340. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiao, M. Literature review and inspiration of the classification of Chinese natural reserves. Planners 2020, 36, 5–12. [Google Scholar]
- Zhao, W.; Zong, L.; Wang, M. Spatial distribution of nature reserves in China. Acta Ecol. Sin. 2024, 44, 2786–2799. [Google Scholar] [CrossRef]
- Ma, T.; Lv, C.; Lei, G. The spatial overlapping analysisi for China’s natural protected area and countermeasures for the optimization and integration of protected area system. Biodivers. Sci. 2019, 27, 758–771. [Google Scholar] [CrossRef]
- Wang, C.; Xie, M. Governance of nature reserves with national parks as the main body: History, challenges, and systemic optimization. Chin. Rural Econ. 2023, 2023, 139–162. [Google Scholar] [CrossRef]
- Cui, G. Discussion and suggestions on serveral key issues in the integration and optimization of protected areas. Biodivers. Sci. 2023, 31, 180–187. [Google Scholar] [CrossRef]
- Yang, H.; Viña, A.; Winkler, J.A.; Chung, M.G.; Huang, Q.; Dou, Y.; McShea, W.J.; Songer, M.; Zhang, J.; Liu, J. A Global Assessment of the Impact of Individual Protected Areas on Preventing Forest Loss. Sci. Total Environ. 2021, 777, 145995. [Google Scholar] [CrossRef]
- Feng, C.; Cao, M.; Wang, W.; Wang, H.; Liu, F.; Zhang, L.; Du, J.; Zhou, Y.; Huang, W.; Li, J. Which Management Measures Lead to Better Performance of China’s Protected Areas in Reducing Forest Loss? Sci. Total Environ. 2021, 764, 142895. [Google Scholar] [CrossRef]
- Yan, Y. Trade-Offs of Ecosystem Services and Determination Ofconservation Priority Areas in the Loess Plateau. Master’s Thesis, Chang’an University, Xi’an, China, 2023. [Google Scholar]
- Feng, X.; Fu, B.; Lu, N.; Zeng, Y.; Wu, B. How Ecological Restoration Alters Ecosystem Services: An Analysis of Carbon Sequestration in China’s Loess Plateau. Sci. Rep. 2013, 3, 2846. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P.; Knapp, D.E.; Martin, R.E.; Tupayachi, R.; Anderson, C.B.; Mascaro, J.; Sinca, F.; Chadwick, K.D.; Higgins, M.; Farfan, W.; et al. Targeted Carbon Conservation at National Scales with High-Resolution Monitoring. Proc. Natl. Acad. Sci. USA 2014, 111, E5016–E5022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiao, J.; Zheng, Y.; Li, S.; Zhou, Y. Increased Carbon Uptake and Water Use Efficiency in Global Semi-Arid Ecosystems. Environ. Res. Lett. 2020, 15, 34022. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Zhang, Q.; Xia, Z.; Hao, H.; Xia, Q. Potential Evapotranspiration Determines Changes in the Carbon Sequestration Capacity of Forest and Grass Ecosystems in Xinjiang, Northwest China. Glob. Ecol. Conserv. 2023, 48, e02737. [Google Scholar] [CrossRef]
- Peng, Y.; Chang, J.; Zhao, X.; Shi, Y.; Bai, Y.; Li, Q.; Yao, S.; Ma, W.; Fang, J.; Yang, Y. Grassland Carbon Sink in China and its Promotion Strategies. Bull. Natl. Nat. Sci. Found. China 2023, 37, 587–602. [Google Scholar]
- Tang, F.; Lv, X.; Cai, F.; Aun, H.; Luo, W. Reflections on integrated optimization schemes of protected areas. Landsc. Archit. 2020, 27, 8–13. [Google Scholar] [CrossRef]
- Wu, R.; Hua, C.; Yu, G.; Ma, J.; Yang, F.; Wang, J.; Jin, T.; Long, Y.; Guo, Y.; Zhao, H. Assessing Protected Area Overlaps and Performance to Attain China’s New National Park System. Biol. Conserv. 2020, 241, 108382. [Google Scholar] [CrossRef]
- Vimal, R.; Navarro, L.M.; Jones, Y.; Wolf, F.; Le Moguédec, G.; Réjou-Méchain, M. The global distribution of protected areas management strategies and their complementarity for biodiversity conservation. Biol. Conserv. 2021, 256, 109014. [Google Scholar] [CrossRef]
R | CS Change Rate | Critical CS Change Rate |
---|---|---|
PA establishment year | 0.169 * | 0.107 |
PA level | 0.331 ** | 0.221 ** |
PA area | 0.612 ** | 0.146 * |
DEM | 0.042 | −0.264 ** |
Slope | 0.380 ** | 0.345 ** |
Silt | −0.266 ** | −0.453 ** |
Sand | 0.106 | 0.246 ** |
Temperature in 2000 | −0.03 | 0.278 ** |
Rate of temperature change | 0.03 | 0.212 ** |
Precipitation in 2000 | 0.418 ** | 0.638 ** |
Rate of precipitation change | −0.14 | −0.307 ** |
Evapotranspiration in 2000 | −0.313 ** | −0.369 ** |
Rate of evapotranspiration change | 0.326 ** | 0.605 ** |
Population density in 2000 | 0.074 | 0.235 ** |
Rate of population density change | 0.082 | 0.025 |
GDP in 2000 | 0.099 | 0.213 ** |
Rate of GDP change | 0.047 | 0.069 |
Cropland in 2000 | 0.281 ** | 0.004 |
Rate of cropland change | −0.048 | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lama, S.; Zhang, J.; Luan, X. Evaluating the Conservation Status and Effectiveness of Multi-Type Protected Areas for Carbon Sequestration in the Loess Plateau, China. Atmosphere 2024, 15, 764. https://doi.org/10.3390/atmos15070764
Lama S, Zhang J, Luan X. Evaluating the Conservation Status and Effectiveness of Multi-Type Protected Areas for Carbon Sequestration in the Loess Plateau, China. Atmosphere. 2024; 15(7):764. https://doi.org/10.3390/atmos15070764
Chicago/Turabian StyleLama, Sony, Jingjing Zhang, and Xiaofeng Luan. 2024. "Evaluating the Conservation Status and Effectiveness of Multi-Type Protected Areas for Carbon Sequestration in the Loess Plateau, China" Atmosphere 15, no. 7: 764. https://doi.org/10.3390/atmos15070764
APA StyleLama, S., Zhang, J., & Luan, X. (2024). Evaluating the Conservation Status and Effectiveness of Multi-Type Protected Areas for Carbon Sequestration in the Loess Plateau, China. Atmosphere, 15(7), 764. https://doi.org/10.3390/atmos15070764