Chemical Composition of PM2.5-0.3 and PM0.3 Collected in Southern Lebanon and Assessment of Their Toxicity in BEAS-2B Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Physico-Chemical Analysis of the Collected PM
2.3. Sample Preparation for Toxicological Studies
2.4. In Vitro Toxicity of PM2.5
2.4.1. Cell Culture and Exposure
2.4.2. Global Cytotoxicity Evaluation: Intracellular Adenosine Triphosphate (ATP) and Extracellular Lactate Dehydrogenase (LDH) Assays
2.4.3. Metabolic Activation of PAHs: Evaluation of the Aryl Hydrocarbon Receptor (AHR) Cell Signaling Pathway
2.4.4. PM-Induced Genotoxicity
2.4.5. Inflammation: TNF-α and IL-6 Secretion
2.5. Statistical Analysis
3. Results and Discussion
3.1. PM2.5 Atmospheric Concentration
3.2. The Chemical Analysis of the Collected PM
3.2.1. Elemental, Water-Soluble Ions, and Total Carbon
3.2.2. Organic Composition
3.3. Evaluation of PM2.5 Toxicity:
3.3.1. ATP Production and LDH Activity
3.3.2. Metabolic Activation of PAHs
3.3.3. Genotoxicity Induced by Atmospheric PM
3.3.4. Inflammation: TNF-α and IL-6 Secretion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1-NPyr | 1-nitropyrene |
9-FluO | 9-Fluorenone |
Ace | Acenaphthalene |
Acy | Acenaphthylene |
Ant | Anthracene |
ATP | Adenosine triphosphate |
BaA | Benz[a]anthracene |
BaP | Benzo[a]pyrene |
BbF | Benzo[b]fluoranthene |
BghiP | Benzo[g,h,i]perylene |
BkF | Benzo[k]fluoranthene |
Chr | Chrysene |
DahA | Dibenz[a,h]anthracene |
Fla | Fluoranthene |
Flu | Fluorene |
InPy | Indeno[1,2,3-c,d]pyrene |
LDH | Lactate dehydrogenase |
N-PAHs | nitrated-PAHs |
Nap | Naphthalene |
OEM | organic extractable matter |
NEM | non-extractable matter |
O-PAHs | oxygenated-PAHs |
PAHs | polycyclic aromatic hydrocarbons |
Phe | Phenanthrene |
PM2.5-0.3 | particles with an equivalent aerodynamic diameter between 0.3 and 2.5 mm |
PM0.3 | particles with an equivalent aerodynamic diameter below 0.3 mm (quasi-ultrafine particles) |
Pyr | Pyrene |
ROS | reactive oxygen species; |
Appendix A
Physico-Chemical Analysis | Techniques | Analyzed Samples | ||
---|---|---|---|---|
PM2.5-0.3 | PM0.3 | |||
PM morphology and individual particle composition | Scanning electron microscopy coupled with energy-dispersive X-ray (SEM-EDX) | ✓ | - | |
Cristalline phases | X-ray diffraction | ✓ | - | |
Elements and water-soluble ions | Inductively coupled plasma atomic emission spectroscopy and ionic chromatography | ✓ | ✓ | |
Organic compounds | PAHs | Gas chromatography–mass spectrometry (GC–MS) | ✓ | ✓ |
N- and O-PAHs | High-resolution gas chromatography and high-resolutionmass spectrometry | ✓ | ✓ | |
PCDD, PCDF, and PCB | High-resolution gas chromatography and high-resolutionmass spectrometry | ✓ | ✓ | |
n-alkanes | Gas chromatography–mass spectrometry (GC–MS) | ✓ | ✓ |
PAHs Diagnosis Ratio | PM2.5-0.3 | PM0.3 | Characteristic Ratio Values and Sources | ||
---|---|---|---|---|---|
InPy/(InPy+B(g,h,i)Pe (a) | 0.59 | 0.50 | 0.18: Cars | 0.62: Wood burning | 0.35–0.70: Diesel burning |
Fla/(Fla+Pyr) (a) | 0.47 | 0.45 | <0.5: Gasoline | >0.5: Diesel | |
B[a]P/(B[a]P+Chry) (b) | 0.29 | 0.38 | >0.35: Vehicular emission | 0.2–0.35: Coal combustion | |
B[b]F/B[k]F (a) | 4.01 | 2.89 | >0.5: Diesel | ||
B[a]P/B[g,h,i]Pe (a) | 0.53 | 0.47 | 0.5–0.6: Traffic emission | >1.25: Brown coal or lignite | |
Anth/(Anth+Phe) (b) | 0.09 | 0.30 | >0.1: Pyrogenic | <0.1: Petrogenic | |
InPy/B(g,h,i)Pe (a) | 1.42 | 1.00 | <0.4: Gasoline | ~1: Diesel | |
Fla/(Fla+Pyr) (b) | 0.48 | 0.46 | <0.4: Petrogenic | 0.4–0.5: Fossil fuel combustion | >0.5: Grass wood coal combustion |
Fla/Pyr (b) | 0.94 | 0.84 | <0.6: Non-traffic emission | >0.6: Traffic emission | |
CPAHs/TPAHs (a) | 0.92 | 0.95 | ≈1 (Combustion) |
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostard, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Antonsen, S.; Agerbo, E.; Hvidtfeldt, U.A.; Geels, C.; Frohn, L.M.; Christensen, J.H.; Sigsgaard, T.; Brandt, J.; Pedersen, C.B. PM2.5 air pollution components and mortality in Denmark. Environ. Int. 2023, 171, 107685. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Outdoor air pollution. IARC Monogr. Eval. Carcinog. Risks Hum. 2016, 109, 9–444. [Google Scholar]
- Badran, G.; Ledoux, F.; Verdin, A.; Abbas, I.; Roumie, M.; Genevray, P.; Landkocz, Y.; Lo Guidice, J.-M.; Garçon, G.; Courcot, D. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere 2020, 243, 125440. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Zheng, Y.; Niu, M.; Zhou, F.; Wu, Y.; Wang, J.; Zhu, T.; Wu, Y.; Wu, Z.; Hu, M.; et al. Characteristics of biological particulate matters at urban and rural sites in the North China Plain. Environ. Pollut. 2019, 253, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, 69–74. [Google Scholar] [CrossRef]
- Cooper, D.M.; Loxham, M. Particulate matter and the airway epithelium: The special case of the underground? Eur. Respir. Rev. 2019, 28, 190066. [Google Scholar] [CrossRef] [PubMed]
- Park, S.R.; Lee, J.W.; Kim, S.K.; Yu, W.J.; Lee, S.J.; Kim, D.; Kim, K.W.; Jung, J.W.; Hong, I.S. The impact of fine particulate matter (PM) on various beneficial functions of human endometrial stem cells through its key regulator SERPINB2. Exp. Mol. Med. 2021, 53, 1850–1865. [Google Scholar] [CrossRef]
- Abbas, I.; Badran, G.; Verdin, A.; Ledoux, F.; Roumie, M.; Lo Guidice, J.-M.; Courcot, D.; Garçon, G. In vitro evaluation of organic extractable matter from ambient PM2.5 using human bronchial epithelial BEAS-2B cells: Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. Environ. Res. 2019, 171, 510–522. [Google Scholar] [CrossRef]
- Badran, G.; Verdin, A.; Grare, C.; Abbas, I.; Achour, D.; Ledoux, F.; Roumie Cazier, F.; Courcot, D.; Jean-Marc Lo Guidice, J.-M.; Garçon, G. Toxicological appraisal of the chemical fractions of ambient fine (PM2.5-0.3) and quasi-ultrafine (PM0.3) particles in human bronchial epithelial BEAS-2B cells. Environ. Pollut. 2020, 263, 114620. [Google Scholar] [CrossRef]
- Pang, P.; Huang, W.; Luo, X.S.; Chen, Q.; Zhao, Z.; Tang, M.; Hong, Y.; Chen, J.; Li, H. In-vitro human lung cell injuries induced by urban PM2.5 during a severe air pollution episode: Variations associated with particle components. Ecotoxicol. Environ. Saf. 2020, 206, 111406. [Google Scholar] [CrossRef] [PubMed]
- Cristaldi, A.; Conti, G.O.; Pellitteri, R.; La Cognata, V.; Copat, C.; Pulvirenti, E.; Grasso, A.; Fiore, M.; Cavallaro, S.; Dell’Albani, P.; et al. In vitro exposure to PM2.5 of olfactory Ensheathing cells and SH-SY5Y cells and possible association with neurodegenerative processes. Environ. Res. 2024, 241, 117575. [Google Scholar] [CrossRef] [PubMed]
- Barzgar, F.; Sadeghi-Mohammadi, S.; Aftabi, Y.; Zarredar, H.; Shakerkhatibi, M.; Sarbakhsh, P.; Gholampour, A. Oxidative stress indices induced by industrial and urban PM2.5-bound metals in A549 cells. Sci. Total Environ. 2023, 877, 162726. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, S. The Effects and Pathogenesis of PM2.5 and Its Components on Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obs. Pulmon Dis. 2023, 18, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Honda, A.; Fukushima, W.; Oishi, M.; Tsuji, K.; Sawahara, T.; Hayashi, T.; Kudo, H.; Kashima, Y.; Takahashi, K.; Sasaki, H.; et al. Effects of Components of PM2.5 Collected in Japan on the Respiratory and Immune Systems. Int. J. Toxicol. 2017, 36, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Cotto, R.I.; Ortiz-Martinez, M.G.; Rivera-Ramirez, E.; Mateus, V.L.; Amaral, B.S.; Jiménez-Vélez, B.D.; Gioda, A. Particle pollution in Rio de Janeiro, Brazil: Increase and decrease of pro-inflammatory cytokines IL-6 and IL-8 in human lung cells. Environ. Pollut. 2014, 194, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Afif, C.; Chélala, C.; Borbon, A.; Abboud, M.; Adjizian-Gérard, J.; Farah, W.; Jambert, C.; Zaarour, R.; Badaro Saliba, N.; Perros, P.E.; et al. SO2 in Beirut: Air quality implication and effects of local emissions and long-range transport. Air Qual. Atmos. Health 2008, 1, 167–178. [Google Scholar] [CrossRef]
- Borgie, M.; Dagher, Z.; Ledoux, F.; Verdin, A.; Cazier, F.; Martin, P.; Hachimi, A.; Shirali, P.; Greige-Gerges, H.; Courcot, D. Comparison between ultrafine and fine particulate matter collected in Lebanon: Chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells. Environ. Pollut. Barking Essex 2015, 205, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Kfoury, A.; Ledoux, F.; Khoury, B.E.; Nakat, H.E.; Nouali, H.; Cazier, F.; Abi-Aad, E.; Aboukaïs, A. A study of the inorganic chemical compositionof atmospheric particulate matterin the region of Chekka, North Lebanon. Leban. Sci. J. 2009, 10, 3–16. [Google Scholar]
- Melki, P.N.; Ledoux, F.; Aouad, S.; Billet, S.; El Khoury, B.; Landkocz, Y.; Abdel-Massih, R.M.; Courcot, D. Physicochemical characteristics, mutagenicity and genotoxicity of airborne particles under industrial and rural influences in Northern Lebanon. Environ. Sci. Pollut. Res. Int. 2017, 24, 18782–18797. [Google Scholar] [CrossRef]
- Waked, A.; Afif, C.; Seigneur, C. Assessment of source contributions to air pollution in Beirut, Lebanon: A comparison of source-based and tracer-based modeling approaches. Air Qual. Atmos. Health 2015, 8, 495–505. [Google Scholar] [CrossRef]
- Leclercq, B.; Alleman, L.Y.; Perdrix, E.; Riffault, V.; Happillon, M.; Strecker, A.; Lo-Guidice, J.-M.; Garçon, G.; Coddeville, P. Particulate metal bioaccessibility in physiological fluids and cell culture media: Toxicological perspectives. Environ. Res. 2017, 156, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Waked, A.; Seigneur, C.; Couvidat, F.; Kim, Y.; Sartelet, K.; Afif, C.; Borbon, A.; Formenti, P.; Sauvage, S. Modeling air pollution in Lebanon: Evaluation at a suburban site in Beirut during summer. Atmos. Chem. Phys. 2013, 13, 5873–5886. [Google Scholar] [CrossRef]
- Melki, P. Health Impact of Airborne Particulate Matter in Northern Lebanon: From a Pilot Epidemiological Study to Physico-Chemical Characterization and Toxicological Effects Assessment. Ph.D. Thesis, Université du Littoral Côte d’Opale, Université de Balamand, Tripoli, Liban, 2017. [Google Scholar]
- Nakhlé, M.M.; Farah, W.; Ziadé, N.; Abboud, M.; Salameh, D.; Annesi-Maesanno, I. Short-term relationships between emergency hospital admissions for respiratory and cardiovascular diseases and fine particulate air pollution in Beirut, Lebanon. Environ. Monit. Assess. 2015, 187, 196. [Google Scholar] [CrossRef] [PubMed]
- Faour, A.; Abboud, M.; Germanos, G.; Wehbeh, F. Assessment of the exposure to PM2.5 in different Lebanese microenvironments at different temporal scales. Environ. Monit. Assess. 2023, 195, 21. [Google Scholar] [CrossRef] [PubMed]
- Rincon, G.; Morantes Quintana, G.; Gonzalez, A.; Buitrago, Y.; Gonzalez, J.C.; Molina, C.; Jones, B. PM2.5 exceedances and source appointment as inputs for an early warning system. Environ. Geochem. Health 2022, 44, 4569–4593. [Google Scholar] [CrossRef] [PubMed]
- Al-Zubaidi, A.; Yanni, S.; Bashour, I. Potassium status in some Lebanese soils. Leban. Sci. J. 2008, 9, 81–97. [Google Scholar]
- Gietl, J.; Lawrence, R.; Thorpe, A.; Harrison, R. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos. Environ. 2010, 44, 141–146. [Google Scholar] [CrossRef]
- Voutsa, D.; Samara, C. Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmos. Environ. 2002, 36, 3583–3590. [Google Scholar] [CrossRef]
- Borgie, M.; Ledoux, F.; Dagher, Z.; Verdin, A.; Cazier, F.; Courcot, L.; Shirali, P.; Greige-Gerges, H.; Courcot, D. Chemical characteristics of PM2.5-0.3 and PM0.3 and consequence of a dust storm episode at an urban site in Lebanon. Atmos. Res. 2016, 180, 274–286. [Google Scholar] [CrossRef]
- INERIS. Hydrocarbures Aromatiques Polycycliques. Guide méthodologique. Acquisition des Données D’entrée des Modèles Analytiques ou Numériques de Transfert dans les Sols et les Eaux Souterraines. Rapport D’étude n°66244-DESP-R01, 2005. p. 99p. Available online: https://transpol.ineris.fr/sites/default/files/cr1/66244-DESP-R02.pdf (accessed on 16 July 2018).
- Ravindra, K.; Sokhi, R.; Vangrieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, V.K.; Kumar, S.; Sharma, C.S.; Akolkar, A.B. Benzo(a)Pyrene Equivalency and Source Identification of Priority Polycyclic Aromatic Hydrocarbons in Surface Sediments from Yamuna River. Polycycl. Aromat. Compd. 2020, 40, 396–411. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Durant, J.L.; Busby, W.F.; Lafleur, A.L.; Penman, B.W.; Crespi, C.L. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat. Res./Genet. Toxicol. 1996, 371, 123–157. [Google Scholar] [CrossRef]
- Goldfarb, J.L.; Suuberg, E.M. Vapor pressures and thermodynamics of oxygen-containing polycyclic aromatic hydrocarbons measured using Knudsen effusion. Env. Toxicol. Chem. 2008, 27, 1244–1249. [Google Scholar] [CrossRef]
- Vione, D.; Barra, S.; de Gennaro, G.; Rienzo, M.; Gilardoni, S.; Perrone, M.; Pozzoli, L. Polycyclic Aromatic Hydrocarbons in the Atmosphere: Monitoring, Sources, Sinks and Fate. II: Sinks and Fate. Ann. Di Chim. 2004, 94, 257–268. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Mechanisms of the Gas-Phase Reactions of Aromatic Hydrocarbons and Pahs with Oh and No 3 Radicals. Polycycl. Aromat. Compd. 2007, 27, 15–40. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Meusel, H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment–A review. Sci. Total Environ. 2017, 581–582, 237–257. [Google Scholar] [CrossRef]
- Walgraeve, C.; Demeestere, K.; Dewulf, J.; Zimmermann, R.; Van Langenhove, H. Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence. Atmos. Environ. 2010, 44, 1831–1846. [Google Scholar] [CrossRef]
- Bruns, E.A.; Krapf, M.; Orasche, J.; Huang, Y.; Zimmermann, R.; Drinovec, L.; Močnik, G.; El-Haddad, I.; Slowik, J.G.; Dommen, J.; et al. Characterization of primary and secondary wood combustion products generated under different burner loads. Atmos. Chem. Phys. 2015, 15, 2825–2841. [Google Scholar] [CrossRef]
- Gullet, B.K.; Touati, A.; Hays, M.D. PCDD/F, PCB, HxCBz, PAH, and PM Emission Factors for Fireplace and Woodstove Combustion in the San Francisco Bay Region. Environ. Sci. Technol. 2003, 37, 1758–1765. [Google Scholar] [CrossRef]
- Orasche, J.; Schnelle-Kreis, J.; Schön, C.; Hartmann, H.; Ruppert, H.; Arteaga-Salas, J.M.; Zimmermann, R. Comparison of Emissions from Wood Combustion. Part 2: Impact of Combustion Conditions on Emission Factors and Characteristics of Particle-Bound Organic Species and Polycyclic Aromatic Hydrocarbon (PAH)-Related Toxicological Potential. Energy Fuels 2013, 27, 1482–1491. [Google Scholar] [CrossRef]
- Kojima, Y.; Inazu, K.; Hisamatsu, Y.; Okochi, H.; Baba, T.; Nagoya, T. Influence of secondary formation on atmospheric occurrences of oxygenated polycyclic aromatic hydrocarbons in airborne particles. Atmos. Environ. 2010, 44, 2873–2880. [Google Scholar] [CrossRef]
- Lara, S.; Villanueva, F.; Cabañas, B.; Sagrario, S.; Aranda, I.; Soriano, J.A.; Martin, P. Determination of policyclic aromatic compounds, (PAH, nitro-PAH and oxy-PAH) in soot collected from a diesel engine operating with different fuels. Sci. Total Environ. 2023, 900, 165755. [Google Scholar] [CrossRef] [PubMed]
- Sekar, M.; Praveenkumar, P. Critical review on the formations and exposure of polycyclic aromatic hydrocarbons (PAHs) in the conventional hydrocarbon-based fuels: Prevention and control strategies. Chemosphere 2024, 350, 141005. [Google Scholar] [CrossRef] [PubMed]
- Scheepers, P.T.J.; Micka, V.; Muzyka, V.; Anzion, R.; Dahmann, D.; Poole, J.; Bos, R.P. Exposure to Dust and Particle-associated 1-Nitropyrene of Drivers of Diesel-powered Equipment in Underground Mining. Ann. Occup. Hyg. 2003, 47, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Bamford, H.; Baker, D. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region. Atmos. Environ. 2003, 37, 2077–2091. [Google Scholar] [CrossRef]
- Fadel, M.; Ledoux, F.; Afif, C.; Courcot, D. Human health risk assessment for PAHs, phthalates, elements, PCDD/Fs, and DL-PCBs in PM2.5 and for NMVOCs in two East-Mediterranean urban sites under industrial influence. Atmos. Pollut. Res. 2022, 13, 101261. [Google Scholar] [CrossRef]
- Urban, J.D.; Wikoff, D.S.; Bunch, A.T.G.; Harris, M.A.; Haws, L.C. A review of background dioxin concentrations in urban/suburban and rural soils across the United States: Implications for site assessments and the establishment of soil cleanup levels. Sci. Total Environ. 2014, 466–467, 586–597. [Google Scholar] [CrossRef]
- Bi, X.; Sheng, G.; Peng, P.; Chen, Y.; Zhang, Z.; Fu, J. Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China. Atmos. Environ. 2003, 37, 289–298. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, J.; Zhao, J.; Xu, H.; Arimoto, R.; Wang, G.; Han, Y.; Shen, Z.; Li, G. n-Alkanes and polycyclic aromatic hydrocarbons in total suspended particulates from the southeastern Tibetan Plateau: Concentrations, seasonal variations, and sources. Sci. Total Environ. 2014, 470–471, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Simoneit, B.R.T. 2019 A review of biomarker compounds as source indicators and tracers for air pollution. Environ. Sci. Pollut. Res. 1999, 6, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, R.P.; Chandel, N.S. Beyond ATP, new roles of mitochondria. Biochemist 2022, 44, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta (BBA) 2017, 1863, 1066–1077. [Google Scholar] [CrossRef]
- Gualtieri, M.; Ovrevik, J.; Mollerup, S.; Asare, N.; Longhin, E.; Dahlman, H.-J.; Camatini, M.; Holme, J.A. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization. Mutat. Res. 2011, 713, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Longhin, E.; Holme, J.A.; Gutzkow, K.B.; Arlt, V.; Kukab, G.; Camatini, M.; Gualtieri, M. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: Characterization of the process and possible mechanisms involved. Part. Fibre Toxicol. 2013, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Garçon, G.; Gosset, P.; Maunit, B.; Zerimech, F.; Creusy, C.; Muller, J.-F.; Shirali, P. Influence of iron ((Fe2O3)-Fe-56 or (Fe2O3)-Fe-54) in the upregulation of cytochrome P4501A1 by benzo[a]pyrene in the respiratory tract of Sprague-Dawley rats. J. Appl. Toxicol. JAT 2004, 24, 249–256. [Google Scholar] [CrossRef]
- Garçon, G.; Gosset, P.; Zerimech, F.; Grave-Descampiaux, B.; Shirali, P. Effect of Fe(2)O(3) on the capacity of benzo(a)pyrene to induce polycyclic aromatic hydrocarbon-metabolizing enzymes in the respiratory tract of Sprague-Dawley rats. Toxicol. Lett. 2004, 150, 179–189. [Google Scholar] [CrossRef]
- Loomis, D.; Huang, W.; Chen, G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: Focus on China. Chin. J. Cancer 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Bouquet, F.; Muller, C.; Salles, B. The loss of gammaH2AX signal is a marker of DNA double strand breaks repair only at low levels of DNA damage. Cell Cycle 2006, 5, 1116–1122. [Google Scholar] [CrossRef]
- Phan, L.M.; Rezaeian, A.H. ATM: Main Features, Signaling Pathways, and Its Diverse Roles in DNA Damage Response, Tumor Suppression, and Cancer Development. Genes 2021, 12, 845. [Google Scholar] [CrossRef]
- Marechal, A.; Zoo, L. DNA Damage Sensing by the ATM and ATR Kinases. Cold Spring Harb. Perspect. Biol. 2013, 5, a012716. [Google Scholar] [CrossRef]
- Fu, H.; Liu, X.; Li, W.; Zu, Y.; Zhou, F.; Shou, Q.; Ding, Z. PM2.5 Exposure Induces Inflammatory Response in Macrophages via the TLR4/COX-2/NF-κB Pathway. Inflammation 2020, 43, 1948–1958. [Google Scholar] [CrossRef]
- Pope, C.A.; Bhatnagar, A.; McCracken, J.P.; Abplanalp, W.; Conklin, D.J.; O’Toole, T. Exposure to Fine Particulate Air Pollution Is Associated With Endothelial Injury and Systemic Inflammation. Circ. Res. 2016, 119, 1204–1214. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Song, L.; Ju, W.; Wang, X.; Dong, L.; Zhang, Y.; Ya, P.; Yang, C.; Li, F. The acute airway inflammation induced by PM2.5 exposure and the treatment of essential oils in Balb/c mice. Sci. Rep. 2017, 7, 44256. [Google Scholar] [CrossRef]
- Leclercq, B.; Kluza, J.; Antherieu, S.; Sotty, J.; Alleman, L.Y.; Perdrix, E.; Loyens, A.; Coddeville, P.; Lo Guidice, J.-M.; Marchetti, P.; et al. Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells. Environ. Pollut. 2018, 243, 1434–1449. [Google Scholar] [CrossRef]
- Sotty, J.; Kluza, J.; De Sousa, C.; Tardivel, M.; Anthérieu, S.; Alleman, L.-Y.; Canivet, L.; Perdrix, E.; Loyens, A.; Marchetti, P.; et al. Mitochondrial alterations triggered by repeated exposure to fine (PM2.5-0.18) and quasi-ultrafine (PM0.18) fractions of ambient particulate matter. Environ. Int. 2020, 142, 105830. [Google Scholar] [CrossRef]
- Rojas, G.A.; Saavedra, N.; Saavedra, K.; Hevia, M.; Morales, C.; Lanas, F.; Salazar, L.A. Polycyclic Aromatic Hydrocarbons (PAHs) Exposure Triggers Inflammation and Endothelial Dysfunction in BALB/c Mice: A Pilot Study. Toxics 2022, 10, 497. [Google Scholar] [CrossRef] [PubMed]
- Totlandsdal, A.I.; Cassee, F.R.; Schwarze, P.; Refsnes, M.; Låg, M. Diesel exhaust particles induce CYP1A1 and pro-inflammatory responses via differential pathways in human bronchial epithelial cells. Part. Fibre Toxicol. 2010, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Urch, B.; Szyszkowicz, M.; Evans, G.; Speck, M.; Van Huang, A.; Leingartner, K.; Shutt, R.H.; Pelletier, G.; Gold, D.R.; et al. Metals and oxidative potential in urban particulate matter influence systemic inflammatory and neural biomarkers: A controlled exposure study. Environ. Int. 2018, 121, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Ichinose, T.; Yoshida, S.; Ito, T.; He, C.; Yoshida, Y.; Arashidani, K.; Takano, H.; Sun, G.; Shibamoto, T. PM2.5-induced lung inflammation in mice: Differences of inflammatory response in macrophages and type II alveolar cells. J. Appl. Toxicol. 2017, 37, 1203–1218. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wei, L.Y.; Ding, R.; Feng, Y.; Li, D.; Li, C.; Malko, P.; Syed-Mortadza, C.; Wu, W.; Yaling, Y.; et al. Predisposition to alzheimer’s and age-related brain pathologies by PM2.5 exposure: Perspective on the roles of oxidative stress and TRPM2 channel. Front. Physiol. 2020, 11, 155. [Google Scholar] [CrossRef]
Species (mg/g) | PM2.5-0.3 | (%) | PM0.3 | (%) |
---|---|---|---|---|
Ca | 87 | 24 | 85 | 20 |
NO3− | 81 | 23 | 80 | 19 |
Al | 43 | 12 | 26 | 6 |
SO42− | 35 | 10 | 16 | 4 |
Fe | 22 | 6 | 13 | 3 |
NH4+ | 19 | 5 | 44 | 10 |
Mg | 16 | 4 | 25 | 6 |
Cl− | 9 | 2 | 15 | 4 |
K | 10 | 3 | 15 | 4 |
Na | 8 | 2 | 57 | 14 |
ThTi | 2 | 0.7 | 1 | 0.2 |
Cu | 2 | 0.6 | 2 | 0.5 |
P | 0.9 | 0.2 | 2 | 0.5 |
Mn | 0.4 | 0.1 | 0.2 | 0.05 |
Sr | 0.3 | 0.08 | 0.2 | 0.05 |
Ba | 0.3 | 0.08 | 0.2 | 0.05 |
Pb | 0.2 | 0.06 | 1 | 0.2 |
Zn | 0.2 | 0.06 | 1 | 0.2 |
Cr | 0.1 | 0.03 | 0.08 | 0.02 |
V | 0.1 | 0.03 | 0.4 | 0.1 |
Sn | <DL * | - | 0.04 | 0.01 |
Ni | 0.1 | 0.03 | 0.2 | 0.05 |
Mo | 0.1 | 0.03 | 1 | 0.2 |
Co | <DL * | - | 0.02 | 0.005 |
As | <DL * | - | 0.02 | 0.005 |
Cd | <DL * | - | 0.01 | 0.002 |
Total carbon | 18 | 5 | 31 | 7 |
Abbreviation | PM2.5-0.3 | PM0.3 | |
---|---|---|---|
PAHs (µg/g) | |||
Naphthalene | Nap | 0.1 | 1 |
Acenaphthylene | Acy | 0.06 | 1 |
Acenaphthene | Ace | 0.01 | 0.3 |
Fluorene | Flu | 0.07 | 0.6 |
Phenantrene | Phe | 2 | 11 |
Anthracene | Ant | 0.05 | 1 |
Fluoranthene | Fla | 3 | 28 |
Pyrene | Pyr | 2 | 27 |
Benz[a]anthracene | BaA | 2 | 50 |
Chrysene | Chry | 4 | 63 |
Benzo[b]fluoranthene | BbF | 9 | 268 |
Benzo[k]fluoranthene | BbK | 2 | 51 |
Benzo[a]pyrene | BaP | 2 | 54 |
Indeno[1,2,3-c,d]pyrene | InPyr | 4 | 226 |
Dibenz[a,h]anthracene | DahA | 0.4 | 29 |
Benzo[g,h,i]perylene | BghiP | 5 | 196 |
ΣPAHs | 35.8 | 1007.3 | |
N-PAHs (µg/g) | |||
2-nitrofluorene | 2-NFlu | 0.4 | 0.9 |
6-nitrochrysene | 6-NChry | 0.3 | 1 |
7-nitrobenz(a)anthracene | 7-NBaA | <DL * | 3 |
3-nitrofluoranthene | 3-NFluor | <DL * | 2 |
1-nitropyrene | 1-NPyr | 0.4 | 1 |
1,3-dinitronaphthalene | 1.3-DNNap | <DL * | <LD * |
5-nitroacenaphthene | 5-NAce | 0.1 | 0.7 |
9-nitroanthracene | 9-NAnt | 0.1 | 3 |
3-nitrophenanthrene | 3-NPhe | <DL * | 1 |
2-nitroanthracene | 2-NAnt | <DL * | 1 |
ΣN-PAHs | 1.3 | 13 | |
O-PAHs (µg/g) | |||
9-fluorenone | 9-FluO | 0.7 | 5 |
9,10-anthraquinone | 9,10-AntQ | 3 | 11 |
Benzo(a)fluorenone | BaFluO | 0.7 | 5 |
7H-benz(de)anthracen-7-one | 1,9-BAntO | 1 | 33 |
Benz(a)anthracen-7,12-dione | 7,12-BaAQ | <LD * | 18 |
1,8-naphtalic anhydre | 4 | 63 | |
1-naphtaldehyde | <LD * | <LD * | |
Phenanthrene-9-carboxyaldehyde | <LD * | <LD * | |
ΣO-PAHs | 9.2 | 136 |
PM2.5-0.3 | PM0.3 | |
---|---|---|
PCDD | ng/g | ng/g |
2,3,7,8 TCDD | 0.02 | 0.04 |
1,2,3,7,8 PeCDD | 0.07 | 0.2 |
1,2,3,4,7,8 HCDD | 0.09 | 0.2 |
1,2,3,6,7,8 HCDD | 0.3 | 0.4 |
1,2,3,7,8,9 HCDD | 0.2 | 0.3 |
1,2,3,4,6,7,8,9 HpCDD | 3 | 3 |
OCDD | 17 | 9 |
ΣPCDD | 20 | 13 |
PCDF | ||
2,3,8,7 TCDF | 0.3 | 0.4 |
1,2,3,7,8 PeCDF | 0.2 | 0.6 |
2,3,4,7,8 PeCDF | 0.4 | 1 |
1,2,3,4,7,8 HCDF | 0.5 | 1 |
1,2,3,6,7,8 HCDF | 0.4 | 1 |
2,3,4,6,7,8 HCDF | 0.5 | 2 |
1,2,3,7,8,9 HCDF | 0.1 | 0.4 |
1,2,3,4,6,7,8 HpCDF | 2 | 5 |
1,2,3,4,7,8,9 HpCDF | 0.3 | 0.7 |
OCDF | 5 | 5 |
ΣPCDF | 9 | 17 |
PCB | ||
PCB 81 | 0.08 | 0.2 |
PCB77 | 2 | 2 |
PCB 123 | 0.7 | 0.6 |
PCB 118 | 19 | 17 |
PCB 114 | 0.8 | 0.2 |
PCB 105 | 10 | 7 |
PCB 126 | 0.09 | 0.2 |
PCB 167 | 2 | 1 |
PCB 156 | 4 | 4 |
PCB 157 | 0.8 | 0.3 |
PCB 169 | 0.09 | 0.3 |
PCB 189 | 1 | 1 |
ΣPCB | 40 | 33 |
PCB indicators | ||
PCB 28 | 28 | 90 |
PCB52 | 44 | 74 |
PCB101 | 26 | 43 |
PCB138 | 45 | 34 |
PCB153 | 54 | 39 |
PCB180 | 42 | 28 |
ΣPCB indicators | 239 | 308 |
Ahr | AhRR | ARNT | CYP1A1 | CYP1B1 | EPHX1 | GSTA4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 h | 24 h | 6 h | 24 h | 6 h | 24 h | 6 h | 24 h | 6 h | 24 h | 6 h | 24 h | 6 h | 24 h | ||
(−) control | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
±0.02 | ±0.02 | ±0.08 | ±0.04 | ±0.02 | ±0.06 | ±0.07 | ±0.03 | ±0.04 | ±0.13 | ±0.12 | ±0.02 | ±0.10 | ±0.14 | ||
PM2.5-0.3 | C1 | 0.87 | 1.74 | 1.6 | 1.11 | 0.93 | 1.37 | 1.00 | 3.70 * | 1.59 | 2.04 * | 0.54 | 1.45 | 0.68 | 1.49 |
±0.07 | ±0.34 | ±0.33 | ±0.33 | ±0.09 | ±0.29 | ±0.13 | ±0.94 | ±0.06 | ±0.36 | ±0.07 | ±0.57 | ±0.11 | ±0.57 | ||
C2 | 1.45± | 2.69 * | 2.48 * | 2.18 * | 0.87 | 2.69 * | 1.57 | 3.45 * | 2.35 * | 4.96 * | 0.86 | 3.10 * | 0.89 | 0.63 * | |
0.26 | ±0.61 | ±0.64 | ±0.64 | ±0.04 | ±0.70 | ±0.14 | ±0.68 | ±0.52 | ±1.35 | ±0.08 | ±0.51 | ±0.04 | ±0.14 | ||
NEM2.5-0.3 | C1 | 0.93 | 0.96 | 1.37 | 1.16 | 0.93 | 1.06 | 1.07 | 1.22 | 1.13 | 1.66 | 0.90 | 1.33 | 1.11 | 1.30 |
±0.18 | ±0.03 | ±0.37 | ±0.37 | ±0.09 | ±0.60 | ±0.2 | ±0.24 | ±0.28 | ±0.58 | ±0.25 | ±0.54 | ±0.33 | ±0.34 | ||
C2 | 0.87 | 1.57 | 0.90 | 1.15 | 0.90 | 1.55 | 0.83 | 1.87 | 1.11 | 1.64 | 0.84 | 1.35 | 0.82 | 1.22 | |
±0.10 | ±0.55 | ±0.23 | ±0.23 | ±0.05 | ±0.39 | ±0.09 | ±0.34 | ±0.28 | ±0.51 | ±0.01 | ±0.32 | ±0.09 | ±0.22 | ||
OEM2.5-0.3 | C1 | 0.65 | 0.94 | 0.91 | 0.97 | 0.88 | 1.28 | 1.02 | 1.00 | 0.75 | 1.48 | 0.78 | 1.06 | 0.88 | 0.93 |
±0.12 | ±0.45 | ±0.04 | ±0.04 | ±0.06 | ±0.40 | ±0.18 | ±0.12 | ±0.06 | ±0.13 | ±0.02 | ±0.30 | ±0.01 | ±0.14 | ||
C2 | 0.61 | 1.22 | 1.05 | 1.19 | 0.99 | 1.40 | 0.90 | 1.63 | 1.35 | 1.88 | 0.95 | 1.80 | 0.95 | 1.20 | |
±0.13 | ±0.59 | ±0.35 | ±0.35 | ±0.03 | ±0.57 | ±0.02 | ±0.36 | ±0.48 | ±0.87 | ±0.26 | ±0.25 | ±0.01 | ±0.59 | ||
OEM0.3 | C1 | 0.80 | 1.33 | 1.26 | 1.27 | 0.87 | 1.38 | 1.26 | 0.93 | 2.84 * | 0.84 | 1.33 | 1.18 | 0.83 | 1.53 |
±0.10 | ±0.23 | ±0.62 | ±0.62 | ±0.11 | ±0.23 | ±0.36 | ±0.03 | ±0.32 | ±0.12 | ±0.38 | ±0.20 | ±0.09 | ±0.28 | ||
C2 | 1.46 | 1.70 | 2.11 * | 1.70 | 1.18 | 0.65 | 2.11 * | 1.21 | 3.91 * | 3.40 * | 2.81 * | 1.81 | 1.50 | 2.21 * | |
±0.51 | ±0.33 | ±0.37 | ±0.37 | ±0.33 | ±0.03 | ±0.85 | ±0.54 | ±0.42 | ±0.98 | ±0.81 | ±0.57 | ±0.28 | ±0.80 | ||
BaP | 25 µM | 0.9 ± 0.13 | 1.50 | 0.94 | 2.50 * | 1.05 | 1.63 * | 1.03 | 7.70 * | 0.69 | 6.02 * | 0.82 | 1.70 * | 0.81 | 1.46 |
*±0.1 | ±0.2 | ±0.93 | ±0.2 | ±0.10 | ±0.2 | ±1.64 | ±0.26 | ±1.57 | ±0.06 | ±0.50 | ±0.2 | ±0.26 | |||
1.50 *±0.1 | 25 µM | 4.18 * | 2.48 * | 3.15 * | 1.64 | 2.36 * | 1.34 | 2.28 * | 1.86 * | 2.55 * | 1.67 * | 2.44 * | 1.75 | 3.04 * | 1.29 |
±0.4 | ±0.72 | ±1.05 | ±0.11 | ±0.54 | ±0.60 | ±0.35 | ±0.46 | ±0.67 | ±0.17 | ±0.45 | ±0.26 | ±1 | ±0.2 | ||
9-FluO | 25 µM | 277.7 * | 152.1 * | 61.3 * | 30.2 * | 134.8 * | 117.0 * | 37.3 * | 18.1 * | 46.4 * | 17.1 * | 114.5 * | 58.1 * | 202.7 * | 94.9 * |
±64 | ±25 | ±12.9 | ±5.23 | ±39 | ±27 | ±3.71 | ±3.14 | ±16.1 | ±3.16 | ±19 | ±9.65 | ±34 | ±18 |
ATR | CHK1 | CHK2 | P21 | P53 | MDM2 | H2AX | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
24 h | 72 h | 24 h | 72 h | 24 h | 72 h | 24 h | 72 h | 24 h | 72 h | 24 h | 72 h | 24 h | 72 h | ||
(−) CONTROL | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
±0.07 | ±0.14 | ±0.08 | ±0.15 | ±0.09 | ±0.12 | ±0.10 | ±0.24 | ±0.17 | ±0.20 | ±0.11 | ±0.12 | ±0.12 | ±0.13 | ||
PM2.5-0.3 | C1 | 0.92 | 1.19 | 0.87 | 1.05 | 0.87 | 1.11 | 0.69 | 1.08 | 0.89 | 0.96 | 0.96 | 1.18 | 0.68 * | 0.81 |
±0.06 | ±0.04 | ±0.39 | ±0.06 | ±0.03 | ±0.02 | ±0.001 | ±0.04 | ±0.06 | ±0.09 | ±0.88 | ±0.20 | ±0.12 | ±0.03 | ||
C2 | 0.94 | 1.02 | 0.86 | 1.15 | 0.85 | 1.18 | 0.50 | 1.27 | 1.08 | 1.06 | 1.04 | 1.35 | 0.63 * | 1.10 | |
±0.14 | ±0.03 | ±0.13 | ±0.37 | ±0.14 | ±0.4 | ±0.09 | ±0.65 | ±0.13 | ±0.35 | ±0.16 | ±0.37 | ±0.14 | ±0.48 | ||
NEM2.5-0.3 | C1 | 1.22 | 0.76 * | 1.13 | 1.03 | 1.22 | 1.06 | 0.87 | 1.09 | 1.35 | 0.58 * | 1.17 | 0.90 | 1.11 | 0.47 * |
±0.2 | ±0.05 | ±0.26 | ±0.11 | ±0.27 | ±0.08 | ±0.18 | ±0.33 | ±0.3 | ±0.11 | ±0.26 | ±0.10 | ±0.23 | ±0.45 | ||
C2 | 1.03 | 0.81 | 0.96 | 1.08 | 0.99 | 1.05 | 0.56 | 0.70 | 1.27 | 0.46 | 1.08 | 0.99 | 0.99 | 0.46 * | |
±0.16 | ±0.16 | ±0.26 | ±0.21 | ±0.27 | ±0.21 | ±0.16 | ±0.20 | ±0.43 | ±0.26 * | ±0.22 | ±0.24 | ±0.22 | ±0.12 | ||
OEM2.5-0.3 | C1 | 1.08 | 1.01 | 1.12 | 1.41 | 1.16 | 1.52 | 1.09 | 0.88 | 1.38 | 1.15 | 1.13 | 1.11 | 0.92 | 0.82 |
±0.21 | ±0.20 | ±0.34 | ±0.32 | ±0.37 | ±0.35 | ±0.2 | ±0.20 | ±0.63 | ±0.40 | ±0.30 | ±0.21 | ±0.24 | ±0.38 | ||
C2 | 1.09 | 0.87 | 1.17 | 1.06 | 0.98 | 1.03 | 1.31 | 0.61 * | 1.34 | 1.09 | 0.83 | 0.90 | 1.00 | 0.49 | |
±0.15 | ±0.12 | ±0.18 | ±0.10 | ±0.11 | ±0.08 | ±0.12 | ±0.04 | ±0.19 | ±0.09 | ±0.72 | ±0.18 | ±0.09 | ±0.05 | ||
OEM0.3 | C1 | 0.89 | 1.09 | 0.86 | 1.35 | 0.92 | 1.38 | 1.00 | 1.08 | 1.10 | 1.02 | 0.94 | 0.96 | 0.86 | 0.49 |
±0.08 | ±0.19 | ±0.14 | ±0.18 | ±0.10 | ±0.23 | ±0.12 | ±0.10 | ±0.08 | ±0.17 | ±0.11 | ±0.11 | ±0.16 | ±0.14 | ||
C2 | 0.99 | 3.41 * | 1.15 | 0.78 * | 1.20 | 0.65 | 2.45 * | 20.21 * | 1.78 * | 9.10 * | 1.26 * | 3.45 * | 0.75 | 1.03 | |
±0.07 | ±0.60 | ±0.14 | ±0.09 | ±0.12 | ±0.03 | ±0.26 | ±4.5 | ±0.39 | ±3.7 | ±0.09 | ±1.22 | ±0.10 | ±0.12 * | ||
BAP | 25 µM | 1 | 1.1 | 1.23 | 1.56 * | 1.34 * | 1.65 * | 1.42 * | 0.94 | 1.24 | 1.03 | 0.88 | 1.40 | 4.29 * | 3.51 * |
±0.224 | ±0.15 | ±0.2 | ±0.16 | ±0.19 | ±0.17 | ±0.08 | ±0.38 | ±0.20 | ±0.11 | ±0.15 | ±0.20 | ±0.47 | ±0.56 | ||
1-Npyr | 25 µM | 1.06 | 0.93 | 1.16 | 1.24 | 3.63 * | 1.31 | 1.19 | 0.65 | 1.15 | 0.80 | 0.95 | 0.88 | 1.71 * | 1.42 * |
±0.01 | ±0.33 | ±0.08 | ±0.21 | ±0.29 | ±0.27 | ±0.24 | ±0.15 | ±0.03 | ±0.193 | ±0.07 | ±0.26 | ±0.09 | ±0.17 | ||
9-FluO | 25 µM | 1 | 0.88 | 1.03 | 1.37 | 1.04 | 1.46 | 0.83 | 0.46 | 1.06 | 0.79 | 1.17 | 0.94 | 1.12 | 1.51 |
±0.209 | ±0.14 | ±0.21 | ±0.32 | ±0.22 | ±0.37 | ±0.27 | ±0.11 | ±0.25 | ±0.15 | ±0.26 | ±0.25 | ±0.29 | ±0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badran, G.; Chwaikani, M.; Verdin, A.; Abbas, I.; Simonin, O.; Cazier, F.; Roumie, M.; Courcot, D.; Lo Guidice, J.-M.; Ledoux, F.; et al. Chemical Composition of PM2.5-0.3 and PM0.3 Collected in Southern Lebanon and Assessment of Their Toxicity in BEAS-2B Cells. Atmosphere 2024, 15, 811. https://doi.org/10.3390/atmos15070811
Badran G, Chwaikani M, Verdin A, Abbas I, Simonin O, Cazier F, Roumie M, Courcot D, Lo Guidice J-M, Ledoux F, et al. Chemical Composition of PM2.5-0.3 and PM0.3 Collected in Southern Lebanon and Assessment of Their Toxicity in BEAS-2B Cells. Atmosphere. 2024; 15(7):811. https://doi.org/10.3390/atmos15070811
Chicago/Turabian StyleBadran, Ghidaa, Malak Chwaikani, Anthony Verdin, Imane Abbas, Ophélie Simonin, Fabrice Cazier, Mohamad Roumie, Dominique Courcot, Jean-Marc Lo Guidice, Frédéric Ledoux, and et al. 2024. "Chemical Composition of PM2.5-0.3 and PM0.3 Collected in Southern Lebanon and Assessment of Their Toxicity in BEAS-2B Cells" Atmosphere 15, no. 7: 811. https://doi.org/10.3390/atmos15070811
APA StyleBadran, G., Chwaikani, M., Verdin, A., Abbas, I., Simonin, O., Cazier, F., Roumie, M., Courcot, D., Lo Guidice, J. -M., Ledoux, F., & Garçon, G. (2024). Chemical Composition of PM2.5-0.3 and PM0.3 Collected in Southern Lebanon and Assessment of Their Toxicity in BEAS-2B Cells. Atmosphere, 15(7), 811. https://doi.org/10.3390/atmos15070811