Characteristics of Atmospheric Rivers and the Impact of Urban Roof Roughness on Precipitation during the “23.7” Extreme Rainstorm against the Background of Climate Warming
Abstract
:1. Introduction
2. Model Description and Experimental Design
2.1. Description of Study Data
2.2. Experimental Design
3. Case Overview
3.1. Observed Precipitation
3.2. Circulation Background
4. The Relationship between ARs and Rainstorms
5. Relationship between Urban Roof Roughness and Rainstorms
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Li, R.; Zhang, Q.; Trier, S.B.; Ying, Z.; Xu, J. Mesoscale Factors Contributing to the Extreme Rainstorm on 20 July 2021 in Zhengzhou, China, as Revealed by Rapid Update 4DVar Analysis. Mon. Weather Rev. 2023, 151, 2153–2176. [Google Scholar] [CrossRef]
- Li, Y.; Ma, C.; Wang, Y. Landslides and Debris Flows Caused by an Extreme Rainstorm on 21 July 2012 in Mountains near Beijing, China. Bull. Eng. Geol. Environ. 2019, 78, 1265–1280. [Google Scholar] [CrossRef]
- Allen, M.R.; Ingram, W.J. Constraints on Future Changes in Climate and the Hydrologic Cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef]
- Shahi, N.K.; Rai, S.; Verma, S.; Bhatla, R. Assessment of Future Changes in High-Impact Precipitation Events for India Using CMIP6 Models. Theor. Appl. Climatol. 2023, 151, 843–857. [Google Scholar] [CrossRef]
- World Meteorological Organization. State of the Global Climate 2023; World Meteorological Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Zhu, Y.; Newell, R.E. A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers. Mon. Weather Rev. 1998, 126, 725–735. [Google Scholar] [CrossRef]
- Ralph, F.M.; Cordeira, J.M.; Neiman, P.J.; Hughes, M. Landfalling Atmospheric Rivers, the Sierra Barrier Jet, and Extreme Daily Precipitation in Northern California’s Upper Sacramento River Watershed. J. Hydrometeorol. 2016, 17, 1905–1914. [Google Scholar] [CrossRef]
- Ralph, F.M.; Dettinger, M.D.; Cairns, M.M.; Galarneau, T.J.; Eylander, J. Defining “Atmospheric River”~How the Glossary of Meteorology Helped Resolve a Debate. Bull. Am. Meteorol. Soc. 2018, 99, 837–839. [Google Scholar] [CrossRef]
- Neiman, P.J.; Schick, L.J.; Ralph, F.M.; Hughes, M.; Wick, G.A. Flooding in Western Washington: The Connection to Atmospheric Rivers. J. Hydrometeorol. 2011, 12, 1337–1358. [Google Scholar] [CrossRef]
- Lavers, D.A.; Villarini, G. Atmospheric Rivers and Flooding over the Central United States. J. Clim. 2013, 26, 7829–7836. [Google Scholar] [CrossRef]
- Lavers, D.A.; Villarini, G. The Nexus between Atmospheric Rivers and Extreme Precipitation across Europe. Geophys. Res. Lett. 2013, 40, 3259–3264. [Google Scholar] [CrossRef]
- Corringham, T.W.; Ralph, F.M.; Gershunov, A.; Cayan, D.R.; Talbot, C.A. Atmospheric Rivers Drive Flood Damages in the Western United States. Sci. Adv. 2019, 5, eaax4631. [Google Scholar] [CrossRef] [PubMed]
- Esfandiari, N.; Lashkari, H. Identifying Atmospheric River Events and Their Paths into Iran. Theor. Appl. Climatol. 2020, 140, 1125–1137. [Google Scholar] [CrossRef]
- Ramos, A.M.; Sousa, P.M.; Dutra, E.; Trigo, R.M. Predictive Skill for Atmospheric Rivers in the Western Iberian Peninsula. Nat. Hazards Earth Syst. Sci. 2020, 20, 877–888. [Google Scholar] [CrossRef]
- Paltan, H.; Waliser, D.; Lim, W.H.; Guan, B.; Yamazaki, D.; Pant, R.; Dadson, S. Global Floods and Water Availability Driven by Atmospheric Rivers. Geophys. Res. Lett. 2017, 44, 10387–10395. [Google Scholar] [CrossRef]
- Gimeno-Sotelo, L.; Gimeno, L. Where does the link between atmospheric moisture transport and extreme precipitation matter? Weather Clim. Extrem. 2023, 39, 100536. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, H. Influences of Large Scale Circulation and Atmospheric Rivers on US Winter Precipitation beyond ENSO. J. Clim. 2024, 1. [Google Scholar] [CrossRef]
- DeFlorio, M.J.; Sengupta, A.; Castellano, C.M.; Wang, J.; Zhang, Z.; Gershunov, A.; Guirguis, K.; Niño, R.L.; Clemesha, R.E.S.; Pan, M.; et al. From California’s Extreme Drought to Major Flooding: Evaluating and Synthesizing Experimental Seasonal and Subseasonal Forecasts of Landfalling Atmospheric Rivers and Extreme Precipitation during Winter 2022/23. Bull. Am. Meteorol. Soc. 2024, 105, E84–E104. [Google Scholar] [CrossRef]
- Michel, C.; Sorteberg, A.; Eckhardt, S.; Weijenborg, C.; Stohl, A.; Cassiani, M. Characterization of the atmospheric environment during extreme precipitation events associated with atmospheric rivers in Norway-Seasonal and regional aspects. Weather Clim. Extrem. 2021, 34, 100370. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; LeMone, M.A.; Tewari, M.; Li, Q.; Wang, Y. An Observational and Modeling Study of Characteristics of Urban Heat Island and Boundary Layer Structures in Beijing. J. Appl. Meteorol. Climatol. 2009, 48, 484–501. [Google Scholar] [CrossRef]
- Shepherd, J.M.; Pierce, H.; Negri, A.J. Rainfall Modification by Major Urban Areas: Observations from Spaceborne Rain Radar on the TRMM Satellite. J. Appl. Meteorol. Climatol. 2002, 41, 689–701. [Google Scholar] [CrossRef]
- Shem, W.; Shepherd, M. On the Impact of Urbanization on Summertime Thunderstorms in Atlanta: Two Numerical Model Case Studies. Atmos. Res. 2009, 92, 172–189. [Google Scholar] [CrossRef]
- Lei, M.; Niyogi, D.; Kishtawal, C.; Pielke, R.A.S.; Beltrán-Przekurat, A.; Nobis, T.E.; Vaidya, S.S. Effect of Explicit Urban Land Surface Representation on the Simulation of the 26 July 2005 Heavy Rain Event over Mumbai, India. Atmos. Chem. Phys. 2008, 8, 5975–5995. [Google Scholar] [CrossRef]
- Bornstein, R.; Lin, Q. Urban Heat Islands and Summertime Convective Thunderstorms in Atlanta: Three Case Studies. Atmos. Environ. 2000, 34, 507–516. [Google Scholar] [CrossRef]
- Flagg, D.D.; Taylor, P.A. Sensitivity of Mesoscale Model Urban Boundary Layer Meteorology to the Scale of Urban Representation. Atmos. Chem. Phys. 2011, 11, 2951–2972. [Google Scholar] [CrossRef]
- Zhu, P. Impact of Land-Surface Roughness on Surface Winds during Hurricane Landfall. Q. J. R. Meteorol. Soc. 2008, 134, 1051–1057. [Google Scholar] [CrossRef]
- Aliabadi, A.A.; Krayenhoff, E.S.; Nazarian, N.; Chew, L.W.; Armstrong, P.R.; Afshari, A.; Norford, L.K. Effects of Roof-Edge Roughness on Air Temperature and Pollutant Concentration in Urban Canyons. Bound.-Layer Meteorol. 2017, 164, 249–279. [Google Scholar] [CrossRef]
- Varquez, A.C.G.; Nakayoshi, M.; Kanda, M. The Effects of Highly Detailed Urban Roughness Parameters on a Sea-Breeze Numerical Simulation. Bound.-Layer Meteorol. 2015, 154, 449–469. [Google Scholar] [CrossRef]
- Li, Q.; Yang, J.; Yang, L. Impact of Urban Roughness Representation on Regional Hydrometeorology: An Idealized Study. J. Geophys. Res. Atmos. 2021, 126, e2020JD033812. [Google Scholar] [CrossRef]
- Pan, Y.; Gu, J.; Yu, J.; Shen, Y.; Shi, C.; Zhou, Z. Test of merging methods for multi-source observed precipitation products at high resolution over China. Acta Meteorol. Sin. 2018, 76, 755–766. [Google Scholar]
- Zhang, L.; Pan, Y.; Gu, J.; Shi, C. Advances and Outlook for International Mainstream Multi-Source Precipitation Merging Products. Adv. Meteorol. Sci. Technol. 2022, 12, 16–27. [Google Scholar] [CrossRef]
- Rutz, J.J.; Steenburgh, W.J.; Ralph, F.M. Climatological Characteristics of Atmospheric Rivers and Their Inland Penetration over the Western United States. Mon. Weather Rev. 2014, 142, 905–921. [Google Scholar] [CrossRef]
- Shields, C.A.; Rutz, J.J.; Leung, L.-Y.; Ralph, F.M.; Wehner, M.; Kawzenuk, B.; Lora, J.M.; McClenny, E.; Osborne, T.; Payne, A.E.; et al. Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project Goals and Experimental Design. Geosci. Model Dev. 2018, 11, 2455–2474. [Google Scholar] [CrossRef]
- Ralph, F.M.; Neiman, P.J.; Wick, G.A. Satellite and CALJET Aircraft Observations of Atmospheric Rivers over the Eastern North Pacific Ocean during the Winter of 1997/98. Mon. Weather Rev. 2004, 132, 1721–1745. [Google Scholar] [CrossRef]
- Mahoney, K.; Jackson, D.L.; Neiman, P.; Hughes, M.; Darby, L.; Wick, G.; White, A.; Sukovich, E.; Cifelli, R. Understanding the Role of Atmospheric Rivers in Heavy Precipitation in the Southeast United States. Mon. Weather Rev. 2016, 144, 1617–1632. [Google Scholar] [CrossRef]
- Pan, M.; Lu, M. A Novel Atmospheric River Identification Algorithm. Water Resour. Res. 2019, 55, 6069–6087. [Google Scholar] [CrossRef]
- Pan, M.; Lu, M. East Asia Atmospheric River Catalog: Annual Cycle, Transition Mechanism, and Precipitation. Geophys. Res. Lett. 2020, 47, e2020GL089477. [Google Scholar] [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Berner, J.; Wang, W.; Powers, G.; Duda, G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4.3; NCAR/TN556+ STR. 2021. Available online: https://opensky.ucar.edu/islandora/object/opensky:2898 (accessed on 13 June 2024).
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, N.; Miao, S.; Kong, F.; Zhang, Y.; Li, N. Urban Morphological Parameters of the Main Cities in China and Their Application in the WRF Model. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002382. [Google Scholar] [CrossRef]
- Zhang, F.H.; Yang, S.; Hu, Y.; Gong, Y.; Qin, H.F. Water Vapor Characteristics of the July 2023 Severe Torrential Rain in North China. Meteor Mon. 2023, 49, 1421–1434. [Google Scholar] [CrossRef]
- Sodemann, H.; Stohl, A. Moisture Origin and Meridional Transport in Atmospheric Rivers and Their Association with Multiple Cyclones. Mon. Weather Rev. 2013, 141, 2850–2868. [Google Scholar] [CrossRef]
- Ralph, F.M.; Neiman, P.J.; Rotunno, R. Dropsonde Observations in Low-Level Jets over the Northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean Vertical-Profile and Atmospheric-River Characteristics. Mon. Weather Rev. 2005, 133, 889–910. [Google Scholar] [CrossRef]
- Hand, W.H.; Fox, N.I.; Collier, C.G. A Study of Twentieth-Century Extreme Rainfall Events in the United Kingdom with Implications for Forecasting. Meteorol. Appl. 2004, 11, 15–31. [Google Scholar] [CrossRef]
- Ralph, F.M.; Neiman, P.J.; Kiladis, G.N.; Weickmann, K.; Reynolds, D.W. A Multiscale Observational Case Study of a Pacific Atmospheric River Exhibiting Tropical—Extratropical Connections and a Mesoscale Frontal Wave. Mon. Weather Rev. 2011, 139, 1169–1189. [Google Scholar] [CrossRef]
- Birungi, J.; Yu, J.; Chaibou, A.A.S.; Matthews, N.; Yeboah, E. Assessing the Effects of Urban Canopy on Extreme Rainfall over the Lake Victoria Basin in East Africa Using the WRF Model. Atmosphere 2024, 15, 226. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. Urban influences on the spatiotemporal characteristics of runoff and precipitation during the 2009 Atlanta flood. J. Hydrometeorol. 2019, 20, 3–21. [Google Scholar] [CrossRef]
- Rajeswari, J.R.; Srinivas, C.V.; Yesubabu, V.; Prasad, D.H.; Venkatraman, B. Impacts of Urbanization, Aerodynamic Roughness, and Land Surface Processes on the Extreme Heavy Rainfall Over Chennai, India. J. Geophys. Res. Atmos. 2021, 126, e2020JD034017. [Google Scholar] [CrossRef]
Scheme | d01 | d02 | d03 |
---|---|---|---|
grid sizes | 81 × 81 | 121 × 121 | 271 × 271 |
grid spacings | 9 km | 3 km | 1 km |
time step | 54 s | 18 s | 6 s |
mp_physics | WSM-3 | WSM-3 | WSM-3 |
ra_lw_physics | RRTM | RRTM | RRTM |
ra_sw_physics | Dudhia | Dudhia | Dudhia |
sf_surface_physics | Noah LSM | Noah LSM | Noah LSM |
bl_pbl_physics | YSU | YSU | YSU |
sf_sfclay_physics | MM5 | MM5 | MM5 |
sf_urban_physics | BEP | BEP | BEP |
Case | Date | Weather System | Maximum Precipitation at a Single Station (mm) | Maximum Daily Precipitation (mm) |
---|---|---|---|---|
“23.7” | 29 July–8 August 2023 | Northeast cold vortex and southwest vortex | 865.3 | 285.4 |
“16.7” | 18–21 July 2016 | Typhoon remnant vortex | 234.5 | 146.5 |
“12.7” | 20–22 July 2012 | Mongolian cold vortex | 357.2 | 263.6 |
“96.8” | 1–5 August 1996 | Extratropical cyclone | 431 | 364.6 |
“63.8” | 2–8 August 1963 | Typhoon remnant vortex | 752.7 | 491.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Fan, J.; Zhang, J.; Tian, L.; Zhang, H.; Cui, T.; Wang, Y.; Wang, R. Characteristics of Atmospheric Rivers and the Impact of Urban Roof Roughness on Precipitation during the “23.7” Extreme Rainstorm against the Background of Climate Warming. Atmosphere 2024, 15, 824. https://doi.org/10.3390/atmos15070824
Xu Y, Fan J, Zhang J, Tian L, Zhang H, Cui T, Wang Y, Wang R. Characteristics of Atmospheric Rivers and the Impact of Urban Roof Roughness on Precipitation during the “23.7” Extreme Rainstorm against the Background of Climate Warming. Atmosphere. 2024; 15(7):824. https://doi.org/10.3390/atmos15070824
Chicago/Turabian StyleXu, Yiguo, Junhong Fan, Jun Zhang, Liqing Tian, Hui Zhang, Tingru Cui, Yating Wang, and Rui Wang. 2024. "Characteristics of Atmospheric Rivers and the Impact of Urban Roof Roughness on Precipitation during the “23.7” Extreme Rainstorm against the Background of Climate Warming" Atmosphere 15, no. 7: 824. https://doi.org/10.3390/atmos15070824
APA StyleXu, Y., Fan, J., Zhang, J., Tian, L., Zhang, H., Cui, T., Wang, Y., & Wang, R. (2024). Characteristics of Atmospheric Rivers and the Impact of Urban Roof Roughness on Precipitation during the “23.7” Extreme Rainstorm against the Background of Climate Warming. Atmosphere, 15(7), 824. https://doi.org/10.3390/atmos15070824