Italian National Radon Action Plan: New Challenges for Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Indoor Radon Measurements and Area of Sampling
2.2. Data Management and Criteria
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vardoulakis, S.; Giagloglou, E.; Steinle, S.; Davis, A.; Sleeuwenhoek, A.; Galea, K.S.; Dixon, K.; Crawford, J.O. Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8972. [Google Scholar] [CrossRef]
- Fishbein, L.; Hemminki, K. Sources, Nature and Levels of Indoor Air Pollutants. In Indoor and Outdoor Air Pollution and Human Cancer; Monographs; Tomatis, L., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 67–87. [Google Scholar]
- Landrigan, P.J. Air pollution and health. Lancet Public Health 2017, 2, e4–e5. [Google Scholar] [CrossRef]
- Kinney, P.L. Interactions of Climate Change, Air Pollution, and Human Health. Curr. Environ. Health Rep. 2018, 5, 179–186. [Google Scholar] [CrossRef]
- Piccoli, A.; Agresti, V.; Chianese, E.; Pirovano, G.; Riccio, A.; Lonati, G. Modelling COVID-19 lockdown impact on the Italian Lombardy region air quality: Assessing of two methods. In Proceedings of the 20th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, HARMO 2020, Tartu, Estonia, 14–18 June 2020. [Google Scholar]
- La Verde, G.; Artiola, V.; La Commara, M.; D’Avino, V.; Angrisani, L.; Sabatino, G.; Pugliese, M. COVID-19 and the Additional Radiological Risk during the Lockdown Period in the Province of Naples City (South Italy). Life 2022, 12, 246. [Google Scholar] [CrossRef]
- Du, W.; Wang, G. Indoor air pollution was nonnegligible during COVID-19 lockdown. Aerosol Air Qual. Res. 2020, 20, 1851–1855. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Casari, L.; Demaria, G.; Russo, M. Indoor Air Quality in Domestic Environments during Periods Close to Italian COVID-19 Lockdown. Int. J. Environ. Res. Public Health 2021, 18, 4060. [Google Scholar] [CrossRef]
- Durante, M.; Cella, L.; Furusawa, Y.; George, K.; Gialanella, G.; Grossi, G.; Pugliese, M.; Saito, M.; Yang, T.C. The effect of track structure on the induction of chromosomal aberrations in murine cells. Int. J. Radiat. Biol. 1998, 73, 253–262. [Google Scholar] [CrossRef]
- Durante, M.; Grossi, G.F.; Napolitano, M.; Pugliese, M.; Gialanella, G. Chromosome-Damage Induced by High-Let Alpha-Particles in Plateau-Phase C3h 10t1/2 Cells. Int. J. Radiat. Biol. 1992, 62, 571–580. [Google Scholar] [CrossRef]
- National Research Council. Health Risks from Exposure to Low Levels of Ionizing Radiation (BEIR VII); National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Lorenzo-González, M.; Torres-Durán, M.; Barbosa-Lorenzo, R.; Provencio-Pulla, M.; Barros-Dios, J.M.; Ruano-Ravina, A. Radon exposure: A major cause of lung cancer. Expert Rev. Respir. Med. 2019, 13, 839–850. [Google Scholar] [CrossRef]
- UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation, Biological Mechanisms of Radiation Actions at Low Doses; United Nations: New York, NY, USA, 2012. [Google Scholar]
- World Health Organization (WHO). WHO Handbook on Indoor Radon: A Public Health Perspective. In WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- International Agency for Research on Cancer (IARC). Monographs on the Evaluation of Carcinogenic Risks to Humans. In Man-Made Mineral Fibres and Radon; IARC Press: Lyon, France, 1988; Volume 43, pp. 33–171. [Google Scholar]
- Nunes, L.J.R.; Curado, A.; Lopes, S.I. The Relationship between Radon and Geology: Sources, Transport and Indoor Accumulation. Appl. Sci. 2023, 13, 7460. [Google Scholar] [CrossRef]
- Collignan, B.; Le Ponner, E.; Mandin, C. Relationships between indoor radon concentrations, thermal retrofit and dwelling characteristics. J. Environ. Radioact. 2016, 165, 124–130. [Google Scholar] [CrossRef]
- Nuccetelli, C.; Risica, S.; Onisei, S.; Leonardi, F.; Trevisi, R. Natural Radioactivity in Building Materials in the European Union: A Database of Activity Concentrations, Radon Emanations and Radon Exhalation Rates; Istituto Superiore di Sanità: Rome, Italy, 2017. [Google Scholar]
- Ambrosino, F.; La Verde, G.; Gagliardo, G.; Mottareale, R.; Della Peruta, G.; Imparato, C.; D’Elia, A.; Pugliese, M. Radon Exhalation Rate: A Metrological Approach for Radiation Protection. Sensors 2024, 24, 3633. [Google Scholar] [CrossRef]
- European Commission. Radiaction Protection 112. In Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials; European Commission: Brussels, Belgium, 1999. [Google Scholar]
- Papastefanou, C.; Stoulos, S.; Manolopoulou, M. The Radioactivity of Building Materials. J. Radioanal. Nucl. Chem. 2005, 266, 367–372. [Google Scholar] [CrossRef]
- La Verde, G.; Artiola, V.; D’Avino, V.; La Commara, M.; Panico, M.; Polichetti, S.; Pugliese, M. Measurement of Natural Radionuclides in Drinking Water and Risk Assessment in a Volcanic Region of Italy, Campania. Water 2021, 13, 3271. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Management of Radioactivity in Drinking-Water; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Appleton, J.D. Radon in air and water. In Essentials of Medical Geology; Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 227–263. [Google Scholar]
- Decreto Legislativo n. 241 del 26 Maggio 2000, Attuazione Della Direttiva 96/29/EURATOM in Materia di Protezione Sanitaria Della Popolazione e dei Lavoratori Contro i Rischi Derivanti Dalle Radiazioni Ionizzanti; Gazz. Uff n. 203: Roma, Italy, 2000. (GU n.203 del 31-08-2000-Suppl. Ordinario n. 140). Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2000-05-26;241 (accessed on 2 June 2024).
- Decreto Legislativo 31 Luglio 2020, n. 101 Attuazione Della Direttiva 2013/59/Euratom, Che Stabilisce Norme Fondamentali Di Sicurezza Relative Alla Protezione Contro i Pericoli Derivanti Dall’esposizione Alle Radiazioni Ionizzanti, e Che Abroga Le Direttive 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom e 2003/122/Euratom e Riordino Della Normativa Di Settore in Attuazione Dell’articolo 20, Comma 1, Lettera a), Della Legge 4 Ottobre 2019, n. 117. (20G00121) (GU Serie Generale n.201 Del 12-08-2020—Suppl. Ordinario n. 29). Available online: https://www.gazzettaufficiale.it/eli/id/2020/08/12/20G00121/sg (accessed on 2 June 2024).
- European Council. Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off. J. Eur. Union 2014, 57, 1–73. [Google Scholar]
- ICRP, 2014. Radiological Protection against Radon Exposure. ICRP Publication 126. Ann. ICRP 43. Available online: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_43_3 (accessed on 10 June 2024).
- Adozione del Piano Nazionale D’azione per Il Radon 2023–2032. (24A00877) (GU Serie Generale n.43 del 21-02-2024-Suppl. Ordinario n. 10). Available online: https://www.gazzettaufficiale.it/eli/id/2024/02/21/24A00877/sg (accessed on 2 June 2024).
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Pugliese, M.; La Verde, G.; D’Avino, V.; Roca, V. The first radon potential map of the Campania region (southern Italy). Appl. Geochem. 2021, 126, 104890. [Google Scholar] [CrossRef]
- Calcaterra, D.; Cappelletti, P.; Langella, A.; Morra, V.; Colella, A.; de Gennaro, R. The building stones of the ancient Centre of Naples (Italy): Piperno from Campi Flegrei. A contribution to the knowledge of a long-time-used stone. J. Cult. Herit. 2000, 1, 415–427. [Google Scholar] [CrossRef]
- Colella, A.; Di Benedetto, C.; Calcaterra, D.; Cappelletti, P.; D’Amore, M.; Di Martire, D.; Graziano, S.F.; Papa, L.; de Gennaro, M.; Langella, A. The Neapolitan yellow tuff: An outstanding example of heterogeneity. Constr. Build. Mater. 2017, 136, 361–373. [Google Scholar] [CrossRef]
- Evangelista, A.; Aversa, S.; Pescatore, T.S.; Pinto, F. Soft rocks in southern Italy and role of volcanic tuffs in the urbanization of Naples. In Proceedings of the II International Symposium on ‘The Geotechnics of Hard Soils and Soft Rocks’, Naples, Italy, 12–14 October 2000; Volume 3, pp. 1243–1267. [Google Scholar]
- Sabbarese, C.; Ambrosino, F.; Roca, V. Analysis by scanner of tracks produced by Radon alpha particles in CR-39 detectors. Radiat. Prot. Dosim. 2020, 191, 154–159. [Google Scholar] [CrossRef]
- Vitale, S.; Ciarcia, S. Tectono-stratigraphic setting of the Campania region (southern Italy). J. Maps 2018, 14, 9–21. [Google Scholar] [CrossRef]
- Lima, A.; Albanese, S.; Cicchella, D. Geochemical baselines for the radioelements K, U, and Th in the Campania region, Italy: A comparison of stream-sediment geochemistry and gamma-ray surveys. Appl. Geochem. 2005, 20, 611–625. [Google Scholar] [CrossRef]
- Ambrosino, F.; La Verde, G.; Sabbarese, C.; Roca, V.; D’Onofrio, A.; Pugliese, M. The first indoor radon mapping in the Campania region, Italy. Isot. Environ. Health Stud. 2023, 59, 192–201. [Google Scholar] [CrossRef] [PubMed]
Soil Type | Code |
---|---|
Lava and pyroclastic rocks | 1 |
Lava and sand | 2 |
Alluvial clay, lapilli and ash | 3 |
Alluvial clay and sand | 4 |
Sand and marine clay | 5 |
Tuff | 6 |
Lava and pyroclastic rocks + alluvial clay | 7 |
Alluvial clay and sand + limestone | 8 |
Dolomite rocks | 9 |
Municipality (Soil Type Code) | Number of Measurements According to NRAP | Activity Concentration (Bq/m3) | Number of Dwellings Representing 15% of NRAP Needed Measurements | Number of Completed Measurements over RL 300 Bq/m3 |
---|---|---|---|---|
Afragola (1) | Needed: 28 | Min: 20 | 4 | 0 |
Completed: 37 | Max: 52 | |||
Arzano (1) | Needed: 24 | Min: 168 | 4 | 13 |
Completed: 19 | Max: 755 | |||
Barano d’Ischia (2) | Needed: 16 | Min: 45 | 2 | 11 |
Completed: 19 | Max: 865 | |||
Boscoreale (1) | Needed: 22 | Min: 58 | 3 | 0 |
Completed: 230 | Max: 276 | |||
Brusciano (3) | Needed: 19 Completed: 15 | Min: 46 Max: 185 | 3 | 1 |
Caivano (4) | Needed: 24 Completed: 11 | Min: 86 Max: 198 | 4 | 0 |
Casamicciola Terme (2) | Needed: 15 Completed: 20 | Min: 46 Max: 491 | 2 | 8 |
Cercola (1) | Needed: 19 Completed: 23 | Min: 28 Max: 427 | 3 | 3 |
Forio d’Ischia (5) | Needed: 19 Completed: 58 | Min: 31 Max: 770 | 3 | 18 |
Giugliano in Campania (1) | Needed: 34 Completed: 29 | Min: 25 Max: 662 | 5 | 15 |
Grumo Nevano (1) | Needed: 19 Completed: 13 | Min: 153 Max: 706 | 3 | 11 |
Ischia (2) | Needed: 20 Completed: 244 | Min: 22 Max: 936 | 3 | 18 |
Lacco Ameno (2) | Needed: 13 Completed: 12 | Min: 54 Max: 532 | 2 | 3 |
Marano di Napoli (1) | Needed: 27 Completed: 12 | Min: 21 Max: 128 | 4 | 0 |
Marigliano (3) | Needed: 23 Completed: 17 | Min: 39 Max: 283 | 3 | 0 |
Monterusciello (6) | Needed: 23 Completed: 16 | Min: 29 Max: 167 | 3 | 0 |
Mugnano di Napoli (1) | Needed: 23 Completed: 36 | Min: 24 Max: 226 | 3 | 0 |
Napoli (7) | Needed: 63 Completed: 974 | Min: 20 Max: 990 | 9 | 174 |
Nola (8) | Needed: 23 Completed: 22 | Min: 23 Max: 120 | 3 | 0 |
Piano di Sorrento (3) | Needed: 18 Completed: 25 | Min: 61 Max: 353 | 3 | 3 |
Pollena Trocchia (1) | Needed: 18 Completed: 82 | Min: 21 Max: 166 | 3 | 0 |
Portici (1) | Needed: 27 Completed: 23 | Min: 25 Max: 473 | 4 | 4 |
Pozzuoli (6) | Needed: 31 Completed: 32 | Min: 25 Max: 495 | 5 | 1 |
San Giorgio a Cremano (1) | Needed: 25 Completed: 28 | Min: 20 Max: 117 | 4 | 0 |
Serrara Fontana (5) | Needed: 12 Completed: 25 | Min: 32 Max: 866 | 2 | 2 |
Sorrento (3) | Needed: 19 Completed: 360 | Min: 25 Max: 772 | 3 | 21 |
Torre del Greco (1) | Needed: 31 Completed: 83 | Min: 33 Max: 680 | 5 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Verde, G.; Della Peruta, G.; Imparato, C.; Ambrosino, F.; Mottareale, R.; Gagliardo, G.; Pugliese, M. Italian National Radon Action Plan: New Challenges for Risk Assessment. Atmosphere 2024, 15, 846. https://doi.org/10.3390/atmos15070846
La Verde G, Della Peruta G, Imparato C, Ambrosino F, Mottareale R, Gagliardo G, Pugliese M. Italian National Radon Action Plan: New Challenges for Risk Assessment. Atmosphere. 2024; 15(7):846. https://doi.org/10.3390/atmos15070846
Chicago/Turabian StyleLa Verde, Giuseppe, Giuseppe Della Peruta, Chiara Imparato, Fabrizio Ambrosino, Rocco Mottareale, Gaetano Gagliardo, and Mariagabriella Pugliese. 2024. "Italian National Radon Action Plan: New Challenges for Risk Assessment" Atmosphere 15, no. 7: 846. https://doi.org/10.3390/atmos15070846
APA StyleLa Verde, G., Della Peruta, G., Imparato, C., Ambrosino, F., Mottareale, R., Gagliardo, G., & Pugliese, M. (2024). Italian National Radon Action Plan: New Challenges for Risk Assessment. Atmosphere, 15(7), 846. https://doi.org/10.3390/atmos15070846