Projected Increase in Heatwaves under 1.5 and 2.0 °C Warming Levels Will Increase the Socio-Economic Exposure across China by the Late 21st Century
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Maximum Temperature and Relative Humidity
2.2.2. Population and Gross Domestic Product (GDP)
2.3. Methods
2.3.1. Definition of Heatwave and Heatwave Days
2.3.2. Determination of Global Warming Time
2.3.3. Population and GDP Exposure to Heatwave
2.3.4. Analysis of the Relative Contribution of the Exposure Factors
3. Results
3.1. Spatiotemporal Changes in Heatwave Days
3.2. Spatiotemporal Changes in Exposure to Heatwave
3.2.1. Population Exposure
3.2.2. GDP Exposure
3.2.3. Combined Population and GDP Exposure (CPGE)
3.3. Analysis of the Importance of Factors Affecting Exposure at Different Scales
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Classification | Abbreviation | Full Name |
---|---|---|
Place name | XJ | Xinjiang |
QTP | Qinghai–Tibetan Plateau | |
NW | Northwest | |
NE | Northeast | |
NC | Northern China | |
SW | Southwest | |
SC | Southern China | |
Program/Mission | CMIP | Coupled Model Intercomparison Project |
Factor | GDP | Gross Domestic Product |
Heatwave parameters | HWI | Heatwave index |
LHWD | The number of light heatwave days | |
MHWD | The number of moderate heatwave days | |
SHWD | The number of severe heatwave days |
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.; Alexander, L.; Nairn, J. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Dunne, J.P.; Stouffer, R.J.; John, J.G. Reductions in labour capacity from heat stress under climate warming. Nat. Clim. Chang. 2013, 3, 563–566. [Google Scholar] [CrossRef]
- Yuan, W.; Cai, W.; Chen, Y.; Liu, S.; Dong, W.; Zhang, H.; Yu, G.; Chen, Z.; He, H.; Guo, W. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Sci. Rep. 2016, 6, 18813. [Google Scholar] [CrossRef] [PubMed]
- UNFCC. Adoption of the Paris Agreement; United Nations Framework Convention on Climate Change: Bonn, Germany, 2015. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Zhai, P.; Yu, R.; Zhou, B.; Chen, Y.; Guo, J.; Lu, Y. Research Progress in Impact of 1.5 °C Global Warming on Global and Regional Scales. Adv. Clim. Chang. Res. 2017, 13, 465–472. [Google Scholar]
- Li, D.; Zou, L.; Zhou, T. Changes of Extreme Indices over China in Response to 1.5 °C Global Warming Projected by a Regional Climate Model. Adv. Earth Sci. 2017, 32, 446–457. [Google Scholar]
- Knutti, R.; Rogelj, J.; Sedláček, J.; Fischer, E.M. A scientific critique of the two-degree climate change target. Nat. Geosci. 2016, 9, 13–18. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, M.; Ren, Z.; Li, M.; Wang, B.; Liu, D.L.; Ou, C.-Q.; Yin, P.; Sun, J.; Tong, S. Projecting heat-related excess mortality under climate change scenarios in China. Nat. Commun. 2021, 12, 1039. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, A.; Zhai, J.; Tao, H.; Jiang, T.; Su, B.; Yang, J.; Wang, G.; Liu, Q.; Gao, C. Tens of thousands additional deaths annually in cities of China between 1.5 °C and 2.0 °C warming. Nat. Commun. 2019, 10, 3376. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Pan, T.; Liu, Y.; Zhang, Y.; Ge, Q.; Ciais, P.; Penuelas, J. Global socioeconomic risk of precipitation extremes under climate change. Earth’s Future 2020, 8, e2019EF001331. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ghosh, A.; Hazra, S.; Ghosh, T.; de Campos, R.S.; Samanta, S. Linking IPCC AR4 & AR5 frameworks for assessing vulnerability and risk to climate change in the Indian Bengal Delta. Prog. Disaster Sci. 2020, 7, 100110. [Google Scholar]
- Jones, B.; O’Neill, B.C.; McDaniel, L.; McGinnis, S.; Mearns, L.O.; Tebaldi, C. Future population exposure to US heat extremes. Nat. Clim. Chang. 2015, 5, 652–655. [Google Scholar] [CrossRef]
- Li-Ge, C.; Yu, F.; Tong, J.; Yong, L. Advances in shared socio-economic pathways for climate change research and assessment. Adv. Clim. Chang. Res. 2012, 8, 74. [Google Scholar]
- Liu, Z.; Anderson, B.; Yan, K.; Dong, W.; Liao, H.; Shi, P. Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change. Sci. Rep. 2017, 7, 43909. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Yuan, X. Impact of climate and population changes on the increasing exposure to summertime compound hot extremes. Sci. Total Environ. 2021, 772, 145004. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Yang, Y.; Chen, X.; Yue, X.; Liu, Y.; Xin, Y. Changes in global heat waves and its socioeconomic exposure in a warmer future. Clim. Risk Manag. 2022, 38, 100459. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Pan, T.; Ciais, P.; Ma, T.; Liu, Y.; Yamazaki, D.; Ge, Q.; Peñuelas, J. Global socioeconomic exposure of heat extremes under climate change. J. Clean. Prod. 2020, 277, 123275. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, C.; Suen, H.P.; Ai, S.; Bai, Y.; Bao, J.; Chen, B.; Cheng, L.; Cui, X.; Dai, H. The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health 2021, 6, e64–e81. [Google Scholar] [CrossRef]
- Guo, J.; Wang, X.; Fan, Y.; Liang, X.; Jia, H.; Liu, L. How Extreme Events in China Would Be Affected by Global Warming—Insights From a Bias-Corrected CMIP6 Ensemble. Earth’s Future 2023, 11, e2022EF003347. [Google Scholar] [CrossRef]
- Dong, D.; Tao, H.; Zhang, Z. Historic evolution of population exposure to heatwaves in Xinjiang Uygur Autonomous Region, China. Sci. Rep. 2023, 13, 7401. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, K.; Huang, X. Population exposure risk to urban extreme heat environment based on ECOSTRESS land surface temperature and mobile phone signaling data: A case study of Xi’an City. Prog. Geogr. 2022, 41, 2061–2072. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, G.; Chen, C.; Lu, Z.; Luo, Z.; Zhou, W. Population exposure to concurrent daytime and nighttime heatwaves in Huai River Basin, China. Sustain. Cities Soc. 2020, 61, 102309. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, L.; Gao, G. Changes in population exposure to high temperature under a future scenario in China and its influencing factors. Acta Geogr. Sin. 2016, 71, 1189–1200. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, D.; Yang, B. Future population exposure to high temperature in China under RCP4. 5 scenario. Geogr. Res. 2016, 35, 2238–2248. [Google Scholar]
- Liu, J.; Ren, Y.; Tao, H.; Shalamzari, M.J. Spatial and temporal variation characteristics of heatwaves in recent decades over China. Remote Sens. 2021, 13, 3824. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, J.; Zhang, T.; Shalamzari, M.J.; Arshad, A.; Liu, T.; Willems, P.; Gao, H.; Tao, H.; Wang, T. Identification and Analysis of Heatwave Events Considering Temporal Continuity and Spatial Dynamics. Remote Sens. 2023, 15, 1369. [Google Scholar] [CrossRef]
- Murakami, D.; Yamagata, Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability 2019, 11, 2106. [Google Scholar] [CrossRef]
- Jiang, T.; Su, B.; Wang, Y.; Wang, G.; Luo, Y.; Zhai, J.; Huang, J.; Jing, C.; Gao, M.; Lin, Q. Gridded datasets for population and economy under Shared Socioeconomic Pathways for 2020–2100. Clim. Chang. Res 2022, 18, 381–383. [Google Scholar]
- Coffel, E.D.; Horton, R.M.; De Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 2017, 13, 014001. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; You, Q.; Chen, D.; Sachindra, D.; AghaKouchak, A.; Kang, S.; Li, M.; Zhai, P.; Ullah, W. Future population exposure to daytime and nighttime heat waves in South Asia. Earth’s Future 2022, 10, e2021EF002511. [Google Scholar] [CrossRef]
- Jones, B.; Tebaldi, C.; O’Neill, B.C.; Oleson, K.; Gao, J. Avoiding population exposure to heat-related extremes: Demographic change vs climate change. Clim. Chang. 2018, 146, 423–437. [Google Scholar] [CrossRef]
- Dahl, K.; Licker, R.; Abatzoglou, J.T.; Declet-Barreto, J. Increased frequency of and population exposure to extreme heat index days in the United States during the 21st century. Environ. Res. Commun. 2019, 1, 075002. [Google Scholar] [CrossRef]
- Tuholske, C.; Caylor, K.; Funk, C.; Verdin, A.; Sweeney, S.; Grace, K.; Peterson, P.; Evans, T. Global urban population exposure to extreme heat. Proc. Natl. Acad. Sci. USA 2021, 118, e2024792118. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.M.; Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Chang. 2013, 3, 126–130. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sterl, A. Humid heat waves at different warming levels. Sci. Rep. 2017, 7, 7477. [Google Scholar] [CrossRef]
- Jia, J.; Zeyong, H. Spatial and temporal features and trend of different level heat waves over China. Adv. Earth Sci. 2017, 32, 546. [Google Scholar]
- Gao, Y.; Gao, X.; Zhang, X. The 2 °C global temperature target and the evolution of the long-term goal of addressing climate change—From the United Nations framework convention on climate change to the Paris agreement. Engineering 2017, 3, 272–278. [Google Scholar] [CrossRef]
- Layachi, O.B. The impact of global warming on climate change and the role of the paris agreement in maintaining the rate of temperature rise. PalArch’s J. Archaeol. Egypt/Egyptol. 2021, 18, 317–344. [Google Scholar]
- Clarke, L.E.; Jiang, K.; Akimoto, K.; Babiker, M.; Blanford, G.J.; Fisher-Vanden, K.; Hourcade, J.-C.; Krey, V.; Kriegler, E.; Loschel, A. Assessing Transformation Pathways. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2015. [Google Scholar]
- Hartmann, D.; Klein Tank, A.; Rusticucci, M.; Alexander, L.; Brönnimann, S.; Charabi, Y. Observations: Atmosphere and Surface In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Ting, H.; Ying, S.; Zhang, X. Temperature and precipitation projection at 1.5 and 2 °C increase in global mean temperature. Chin. Sci. Bull. 2017, 62, 3098–3111. [Google Scholar]
- Dosio, A.; Mentaschi, L.; Fischer, E.M.; Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 054006. [Google Scholar] [CrossRef]
- Li, R.-K.; Han, Z.-Y.; Xu, Y.; Shi, Y.; Wu, J. An ensemble projection of GDP and population exposure to high temperature events over Jing-Jin-Ji district based on high resolution combined dynamical and statistical downscaling datasets. Adv. Clim. Chang. Res. 2020, 16, 491. [Google Scholar]
- Harrington, L.J.; Otto, F.E. Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5 °C and 2 °C of warming. Environ. Res. Lett. 2018, 13, 034011. [Google Scholar] [CrossRef]
Model | Nationality | Institution | Resolution | Time Series | ||
---|---|---|---|---|---|---|
Variable | Baseline Period | Future Period | ||||
IPSL-CM6A-LR | France | IPSL | 1.3° × 2.5° | Daily maximum near-surface air temperature and near-surface relative humidity | 1984 – 2014 | 2015 – 2100 |
MPI-ESM1-2-HR | Germany | DKRZ | 0.9° × 0.9° | |||
MRI-ESM2-0 | Japanese | MRI | 1.12° × 1.12° | |||
UKESM1-0-LL | Britain | NCAS | 1.3° × 1.9° | |||
GFDL-ESM4 | USA | NOAA-GFDL | 1° × 1.25° |
Levels | Light | Moderate | Severe |
---|---|---|---|
Classification | 2.8 ≤ HWI < 6.5 | 6.5 ≤ HWI < 10.5 | HWI ≥ 10.5 |
SSPs | Warming Levels | Central Year | Period |
---|---|---|---|
SSP2-4.5 | 1.5 °C | 2032 | 2017–2047 |
2.0 °C | 2051 | 2036–2066 | |
SSP5-8.5 | 1.5 °C | 2029 | 2015–2045 |
2.0 °C | 2042 | 2027–2057 |
Period | Population Exposure | GDP Exposure | ||||
---|---|---|---|---|---|---|
Climate Effect | Population Effect | Interaction Effect | Climate Effect | GDP Effect | Interaction Effect | |
SSP2-4.5/1.5 °C | 72.55 | 5.06 | 22.39 | 9.77 | 12.53 | 77.70 |
SSP2-4.5/2.0 °C | 75.25 | 2.50 | 22.25 | 7.14 | 7.38 | 85.48 |
SSP5-8.5/1.5 °C | 76.07 | 3.98 | 19.95 | 9.73 | 10.57 | 79.70 |
SSP5-8.5/2.0 °C | 79.10 | 2.09 | 18.81 | 7.16 | 6.85 | 85.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, A.; Zhang, T.; Pan, P.; Ren, Y. Projected Increase in Heatwaves under 1.5 and 2.0 °C Warming Levels Will Increase the Socio-Economic Exposure across China by the Late 21st Century. Atmosphere 2024, 15, 900. https://doi.org/10.3390/atmos15080900
Liu J, Wang A, Zhang T, Pan P, Ren Y. Projected Increase in Heatwaves under 1.5 and 2.0 °C Warming Levels Will Increase the Socio-Economic Exposure across China by the Late 21st Century. Atmosphere. 2024; 15(8):900. https://doi.org/10.3390/atmos15080900
Chicago/Turabian StyleLiu, Jinping, Antao Wang, Tongchang Zhang, Pan Pan, and Yanqun Ren. 2024. "Projected Increase in Heatwaves under 1.5 and 2.0 °C Warming Levels Will Increase the Socio-Economic Exposure across China by the Late 21st Century" Atmosphere 15, no. 8: 900. https://doi.org/10.3390/atmos15080900
APA StyleLiu, J., Wang, A., Zhang, T., Pan, P., & Ren, Y. (2024). Projected Increase in Heatwaves under 1.5 and 2.0 °C Warming Levels Will Increase the Socio-Economic Exposure across China by the Late 21st Century. Atmosphere, 15(8), 900. https://doi.org/10.3390/atmos15080900