Precipitation Characteristics and Mechanisms over Sri Lanka against the Background of the Western Indian Ocean: 1981–2020
Abstract
:1. Introduction
2. Data and Methodology
2.1. Datasets Used in the Study
2.1.1. Precipitation Data
2.1.2. Reanalysis Data
2.2. Definition of Extreme Precipitation Events
2.3. Statistical Methods
3. Results and Discussion
3.1. Long-Term Precipitation Characteristics
3.1.1. Spatiotemporal Changes in Precipitation in Sri Lanka
3.1.2. Impact of Indian Ocean SST Anomalies on Sri Lanka’s OND Precipitation Anomalies
3.2. Spatial Variability of Extreme Precipitation Indices
3.3. Case Study
3.3.1. Environmental Conditions
3.3.2. Mechanistic Analysis
4. Conclusions
- Sri Lanka exhibits unique spatial precipitation patterns from 1981 to 2020. Precipitation gradually increases from the southwest to the northeast of Sri Lanka. It is worth noting that there is a substantial and evident upward trend in precipitation in both summer and winter, with the OND period having the wettest months. These changes in precipitation distribution under changing climate conditions have significant implications for meteorologists and climate researchers.
- This study finds that the IO SST increased significantly after 2002, with significant warming from western to central tropical IO. Subsequent investigations highlighted the rising IO SST influence on precipitation patterns in Sri Lanka. The increase in the western IO SST also results in the development of an east–west zonal pattern of the SST gradient, which fosters the reinforcement of low-level circulation and the onset of anomalous westerly winds in the equatorial western IO. The anomalous westerlies in turn induce extensive convergence of the western IO in the SIM, causing increased precipitation over Sri Lanka during the OND period. These findings provide valuable insights into the mechanisms by which changes in the IO SST affect precipitation patterns in Sri Lanka.
- Simultaneously, the study observes a notable increase in extreme precipitation in the arid northern part of Sri Lanka in recent years. The study further focused on the extreme precipitation event in Jaffna in arid northern Sri Lanka on 9 November 2021. The results showed that in terms of precipitation relative to the climatic norms over an extended period, the Jaffna region has low-level convergence, high-level divergence, increased humidity, and anomalies in near-surface low pressure. These climate systems result in the anomalous convergence of northeasterly and westerly winds in the Jaffna region, transporting substantial quantities of water vapor to the region from the IO, Arabian Sea, and BOB. These dynamics are considered key factors in the incidence of severe precipitation events. Furthermore, negative anomalies in geopotential height, horizontal and vertical wind shear, and vertical velocity over the Jaffna region indicate the presence of a convective system that promotes intense convective activity, thus creating dynamic circumstances for extreme precipitation incidents in the area.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabler, C.A.; Osland, M.J.; Grace, J.B.; Stagg, C.L.; Day, R.H.; Hartley, S.B.; Enwright, N.M.; From, A.S.; McCoy, M.L.; McLeod, J.L. Macroclimatic Change Expected to Transform Coastal Wetland Ecosystems This Century. Nat. Clim. Change 2017, 7, 142–147. [Google Scholar] [CrossRef]
- Curtis, S. Means and Long-Term Trends of Global Coastal Zone Precipitation. Sci. Rep. 2019, 9, 5401. [Google Scholar] [CrossRef] [PubMed]
- Argüeso, D.; Luca, A.D.; Jourdain, N.C.; Romero, R.; Homar, V. Mechanisms for Extreme Precipitation Changes in a Tropical Archipelago. J. Clim. 2022, 35, 5519–5536. [Google Scholar] [CrossRef]
- Hendon, H.H.; Woodberry, K. The Diurnal Cycle of Tropical Convection. J. Geophys. Res. Atmos. 1993, 98, 16623–16637. [Google Scholar] [CrossRef]
- Li, Y.; Jourdain, N.C.; Taschetto, A.S.; Gupta, A.S.; Argüeso, D.; Masson, S.; Cai, W. Resolution Dependence of the Simulated Precipitation and Diurnal Cycle over the Maritime Continent. Clim. Dyn. 2017, 48, 4009–4028. [Google Scholar] [CrossRef]
- Love, B.S.; Matthews, A.J.; Lister, G.M.S. The Diurnal Cycle of Precipitation over the Maritime Continent in a High-Resolution Atmospheric Model. Q. J. R. Meteorol. Soc. 2011, 137, 934–947. [Google Scholar] [CrossRef]
- Lu, J.; Li, T.; Wang, L. Precipitation Diurnal Cycle over the Maritime Continent Modulated by the MJO. Clim. Dyn. 2019, 53, 6489–6501. [Google Scholar] [CrossRef]
- Vincent, C.L.; Lane, T.P. Evolution of the Diurnal Precipitation Cycle with the Passage of a Madden–Julian Oscillation Event through the Maritime Continent. Mon. Weather. Rev. 2016, 144, 1983–2005. [Google Scholar] [CrossRef]
- Qian, J.-H. Why Precipitation Is Mostly Concentrated over Islands in the Maritime Continent. J. Atmos. Sci. 2008, 65, 1428–1441. [Google Scholar] [CrossRef]
- Roberts, M.G.; Dawe, D.; Falcon, W.P.; Naylor, R.L. El Niño–Southern Oscillation Impacts on Rice Production in Luzon, the Philippines. J. Appl. Meteorol. Climatol. 2009, 48, 1718–1724. [Google Scholar] [CrossRef]
- Shelton, S.; Ogou, F.K.; Pushpawela, B. Spatial-Temporal Variability of Droughts during Two Cropping Seasons in Sri Lanka and Its Possible Mechanisms. Asia-Pac. J. Atmos. Sci. 2022, 58, 127–144. [Google Scholar] [CrossRef]
- Zubair, L. El Niño–Southern Oscillation Influences on the Mahaweli Streamflow in Sri Lanka: Enso Influences on Sri-Lankan Streamflow. Int. J. Climatol. 2003, 23, 91–102. [Google Scholar] [CrossRef]
- Zubair, L.; Nijamdeen, A. Sri Lanka. In El Niño Ready Nations and Disaster Risk Reduction: 19 Countries in Perspective; Glantz, M.H., Ed.; Disaster Studies and Management; Springer International Publishing: Cham, Switzerland, 2022; pp. 75–93. ISBN 978-3-030-86503-0. [Google Scholar]
- Lam, V.W.Y.; Allison, E.H.; Bell, J.D.; Blythe, J.; Cheung, W.W.L.; Frölicher, T.L.; Gasalla, M.A.; Sumaila, U.R. Climate Change, Tropical Fisheries and Prospects for Sustainable Development. Nat. Rev. Earth Environ. 2020, 1, 440–454. [Google Scholar] [CrossRef]
- Steinacher, M.; Joos, F.; Frölicher, T.L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S.C.; Gehlen, M.; Lindsay, K.; Moore, J.K.; et al. Projected 21st Century Decrease in Marine Productivity: A Multi-Model Analysis. Biogeosciences 2010, 7, 979–1005. [Google Scholar] [CrossRef]
- Koralegedara, S.B.; Huang, W.-R.; Tung, P.-H.; Chiang, T.-Y. El Niño-Southern Oscillation Modulation of Springtime Diurnal Rainfall Over a Tropical Indian Ocean Island. Earth Space Sci. 2023, 10, e2023EA002832. [Google Scholar] [CrossRef]
- Chandimala, J.; Zubair, L. Predictability of Stream Flow and Rainfall Based on ENSO for Water Resources Management in Sri Lanka. J. Hydrol. 2007, 335, 303–312. [Google Scholar] [CrossRef]
- Wijeratne, V.P.I.S.; Li, G.; Mehmood, M.S.; Abbas, A. Assessing the Impact of Long-Term ENSO, SST, and IOD Dynamics on Extreme Hydrological Events (EHEs) in the Kelani River Basin (KRB), Sri Lanka. Atmosphere 2022, 14, 79. [Google Scholar] [CrossRef]
- Mageswaran, T.; Sachithanandam, V.; Sridhar, R.; Mahapatra, M.; Purvaja, R.; Ramesh, R. Impact of Sea Level Rise and Shoreline Changes in the Tropical Island Ecosystem of Andaman and Nicobar Region, India. Nat. Hazards 2021, 109, 1717–1741. [Google Scholar] [CrossRef]
- Shahid, S. Trends in Extreme Rainfall Events of Bangladesh. Theor. Appl. Climatol. 2011, 104, 489–499. [Google Scholar] [CrossRef]
- Burt, T.P.; Weerasinghe, K.D.N. Rainfall Distributions in Sri Lanka in Time and Space: An Analysis Based on Daily Rainfall Data. Climate 2014, 2, 242–263. [Google Scholar] [CrossRef]
- Alahacoon, N.; Edirisinghe, M. Spatial Variability of Rainfall Trends in Sri Lanka from 1989 to 2019 as an Indication of Climate Change. ISPRS Int. J. Geo-Inf. 2021, 10, 84. [Google Scholar] [CrossRef]
- Malmgren, B.A.; Hulugalla, R.; Hayashi, Y.; Mikami, T. Precipitation Trends in Sri Lanka since the 1870s and Relationships to El Niño–Southern Oscillation. Int. J. Climatol. 2003, 23, 1235–1252. [Google Scholar] [CrossRef]
- Wickramagamage, P. Seasonality and Spatial Pattern of Rainfall of Sri Lanka: Exploratory Factor Analysis. Int. J. Climatol. 2010, 30, 1235–1245. [Google Scholar] [CrossRef]
- Nisansala, W.D.S.; Abeysingha, N.S.; Islam, A.; Bandara, A.M.K.R. Recent Rainfall Trend over Sri Lanka (1987–2017). Int. J. Climatol. 2020, 40, 3417–3435. [Google Scholar] [CrossRef]
- Yasanayake, C.N.; Zaitchik, B.F.; Gnanadesikan, A. Seasonal Modulation of the Madden–Julian Oscillation’s Impact on Rainfall in Sri Lanka. J. Clim. 2023, 36, 7231–7255. [Google Scholar] [CrossRef]
- Mamalakis, A.; Randerson, J.T.; Yu, J.-Y.; Pritchard, M.S.; Magnusdottir, G.; Smyth, P.; Levine, P.A.; Yu, S.; Foufoula-Georgiou, E. Zonally Contrasting Shifts of the Tropical Rain Belt in Response to Climate Change. Nat. Clim. Change 2021, 11, 143–151. [Google Scholar] [CrossRef]
- Suppiah, R. Relationships between the Southern Oscillation and the Rainfall of Sri Lanka. Int. J. Climatol. 1989, 9, 601–618. [Google Scholar] [CrossRef]
- Lashkari, H.; Mohammadi, Z.; Keikhosravi, G. Annual Fluctuations and Displacements of Inter Tropical Convergence Zone (ITCZ) within the Range of Atlantic Ocean-India. Open J. Ecol. 2017, 7, 12–33. [Google Scholar] [CrossRef]
- Sattar, A.M.; Cheung, K.K.W. Comparison between the Active Tropical Cyclone Seasons over the Arabian Sea and Bay of Bengal. Int. J. Climatol. 2019, 39, 5486–5502. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, Y.; Hu, J.; Aung, C.; Lin, X.; Jing, C.; Zhang, J. The Strong Upwelling Event off the Southern Coast of Sri Lanka in 2013 and Its Relationship with Indian Ocean Dipole Events. J. Clim. 2021, 34, 3555–3569. [Google Scholar] [CrossRef]
- Warnasooriya, A.R.P.; Premalal, K.H.M.S.; Kumara, A.W.S.J.; Premachandra, C.G. Synoptic and Mesoscale Background of the Disastrous Heavy Rainfall in Sri Lanka Caused by a Low Pressure System. In Multi-Hazard Early Warning and Disaster Risks; Amaratunga, D., Haigh, R., Dias, N., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 407–416. [Google Scholar] [CrossRef]
- Kajakokulan, P.; Warnasooriya, A.; Pathirana, G. Strengthening of Sri Lanka Summer Monsoon Rainfall with Rapid Arabian Sea Warming. Int. J. Climatol. 2023, 43, 5751–5762. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust Responses of the Hydrological Cycle to Global Warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Chou, C.; Neelin, J.D.; Chen, C.-A.; Tu, J.-Y. Evaluating the “Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global Warming. J. Clim. 2009, 22, 1982–2005. [Google Scholar] [CrossRef]
- Sobel, A.H.; Camargo, S.J. Projected Future Seasonal Changes in Tropical Summer Climate. J. Clim. 2011, 24, 473–487. [Google Scholar] [CrossRef]
- Huang, P.; Xie, S.-P.; Hu, K.; Huang, G.; Huang, R. Patterns of the Seasonal Response of Tropical Rainfall to Global Warming. Nat. Geosci. 2013, 6, 357–361. [Google Scholar] [CrossRef]
- Chadwick, R.; Boutle, I.; Martin, G. Spatial Patterns of Precipitation Change in CMIP5: Why the Rich Do Not Get Richer in the Tropics. J. Clim. 2013, 26, 3803–3822. [Google Scholar] [CrossRef]
- Thambyahpillay, G. The Rainfall Rhythm in Ceylon. Univ. Ceylon Rev. 1954, 12, 224–273. Available online: https://cir.nii.ac.jp/crid/1573668924889189504 (accessed on 8 July 2024).
- Askman, J.; Nilsson, O.; Becker, P. Why People Live in Flood-Prone Areas in Akuressa, Sri Lanka. Int. J. Disaster Risk Sci. 2018, 9, 143–156. [Google Scholar] [CrossRef]
- Withanachchi, S.S.; Köpke, S.; Withanachchi, C.R.; Pathiranage, R.; Ploeger, A. Water Resource Management in Dry Zonal Paddy Cultivation in Mahaweli River Basin, Sri Lanka: An Analysis of Spatial and Temporal Climate Change Impacts and Traditional Knowledge. Climate 2014, 2, 329–354. [Google Scholar] [CrossRef]
- Deoras, A.; Turner, A.G.; Hunt, K.M.R.; Jayawardena, I.M.S.P. The Influence of Weather Patterns and the Madden-Julian Oscillation on Extreme Precipitation Over Sri Lanka. Geophys. Res. Lett. 2023, 50, e2023GL103727. [Google Scholar] [CrossRef]
- Samantha, G. The Impact of Natural Disasters on Micro, Small and Medium Enterprises (MSMEs): A Case Study on 2016 Flood Event in Western Sri Lanka. Procedia Eng. 2018, 212, 744–751. [Google Scholar] [CrossRef]
- Kalubowila, P.; Lokupitiya, E.; Halwatura, D.; Jayathissa, G. Threshold Rainfall Ranges for Landslide Occurrence in Matara District of Sri Lanka and Findings on Community Emergency Preparedness. Int. J. Disaster Risk Reduct. 2021, 52, 101944. [Google Scholar] [CrossRef]
- Warnasooriya, A.R.P.; Mendis, M.M.P.; Fernando, M. A Case Study of an Unexpected Extreme Rainfall Event on September 1, 2020, in Sri Lanka. In Extreme Natural Events: Sustainable Solutions for Developing Countries; Unnikrishnan, A.S., Tangang, F., Durrheim, R.J., Eds.; Springer Nature: Singapore, 2022; pp. 147–164. [Google Scholar] [CrossRef]
- Ashok, K.; Saji, N.H. On the Impacts of ENSO and Indian Ocean Dipole Events on Sub-Regional Indian Summer Monsoon Rainfall. Nat. Hazards 2007, 42, 273–285. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Yamagata, T. Impact of the Indian Ocean Dipole on the Relationship between the Indian Monsoon Rainfall and ENSO. Geophys. Res. Lett. 2001, 28, 4499–4502. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A Dipole Mode in the Tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Polonsky, A.; Torbinsky, A. The IOD–ENSO Interaction: The Role of the Indian Ocean Current’s System. Atmosphere 2021, 12, 1662. [Google Scholar] [CrossRef]
- Lim, E.-P.; Hendon, H.H. Causes and Predictability of the Negative Indian Ocean Dipole and Its Impact on La Niña During 2016. Sci. Rep. 2017, 7, 12619. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Cai, W. Two-Year Consecutive Concurrences of Positive Indian Ocean Dipole and Central Pacific El Niño Preconditioned the 2019/2020 Australian “Black Summer” Bushfires. Geosci. Lett. 2020, 7, 19. [Google Scholar] [CrossRef]
- Zubair, L.; Rao, S.A.; Yamagata, T. Modulation of Sri Lankan Maha Rainfall by the Indian Ocean Dipole. Geophys. Res. Lett. 2003, 30, 1063. [Google Scholar] [CrossRef]
- Ratnayake, U.; Herath, S. Changing Rainfall and Its Impact on Landslides in Sri Lanka. J. Mt. Sci. 2005, 2, 218–224. [Google Scholar] [CrossRef]
- Jayasekara, S.; Ushiyama, T.; Rasmy, M.; Kamae, Y. Investigation of Tropical Cyclones in the North Indian Ocean and the Linkage to Extreme Weather Events over Sri Lanka. Atmosphere 2024, 15, 390. [Google Scholar] [CrossRef]
- Fu, T.; Zhang, L.; Chen, B.; Yan, M. Human Disturbance on the Land Surface Environment in Tropical Islands: A Remote Sensing Perspective. Remote Sens. 2022, 14, 2100. [Google Scholar] [CrossRef]
- Buontempo, C.; Brookshaw, A.; Arribas, A.; Mylne, K. Multi-Scale Projections of Weather and Climate at the Uk Met Office. In Management of Weather and Climate Risk in the Energy Industry; Springer: Dordrecht, The Netherlands, 2010; pp. 39–50. [Google Scholar] [CrossRef]
- Ren, Z.H.; Zhao, P.; Zhang, Q.; Zhang, Z.F.; Chen, Z. Quality Control Procedures for Hourly Precipitation Data from Automatic Weather Stations in China. Meteorol. Mon. 2010, 36, 123–132. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Adler, R.F.; Sapiano, M.R.P.; Huffman, G.J.; Wang, J.-J.; Gu, G.; Bolvin, D.; Chiu, L.; Schneider, U.; Becker, A.; Nelkin, E.; et al. The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. Atmosphere 2018, 9, 138. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.; Adler, R.F. Variability and Trends in Tropical Precipitation Intensity in Observations and Climate Models. Clim. Dyn. 2024, 1–15. [Google Scholar] [CrossRef]
- Liao, L.; Meneghini, R. GPM DPR Retrievals: Algorithm, Evaluation, and Validation. Remote Sens. 2022, 14, 843. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bandara, U.; Agarwal, A.; Srinivasan, G.; Shanmugasundaram, J.; Jayawardena, I.M.S. Intercomparison of Gridded Precipitation Datasets for Prospective Hydrological Applications in Sri Lanka. Int. J. Climatol. 2021, 42, 3378–3396. [Google Scholar] [CrossRef]
- Wu, J.; Guo, J.; Yun, Y.; Yang, R.; Guo, X.; Meng, D.; Sun, Y.; Zhang, Z.; Xu, H.; Chen, T. Can ERA5 Reanalysis Data Characterize the Pre-Storm Environment? Atmos. Res. 2024, 297, 107108. [Google Scholar] [CrossRef]
- Vincent, L.A.; Aguilar, E.; Saindou, M.; Hassane, A.F.; Jumaux, G.; Roy, D.; Booneeady, P.; Virasami, R.; Randriamarolaza, L.Y.A.; Faniriantsoa, F.R.; et al. Observed Trends in Indices of Daily and Extreme Temperature and Precipitation for the Countries of the Western Indian Ocean, 1961–2008. J. Geophys. Res. 2011, 116, D10108. [Google Scholar] [CrossRef]
- Herrera, G.; Notti, D.; García-Davalillo, J.C.; Mora, O.; Cooksley, G.; Sánchez, M.; Arnaud, A.; Crosetto, M. Analysis with C- and X-Band Satellite SAR Data of the Portalet Landslide Area. Landslides 2011, 8, 195–206. [Google Scholar] [CrossRef]
- Costa, A.C.; Santos, J.A.; Pinto, J.G. Climate Change Scenarios for Precipitation Extremes in Portugal. Theor. Appl. Climatol. 2012, 108, 217–234. [Google Scholar] [CrossRef]
- Jiang, F.; Hu, R.-J.; Wang, S.-P.; Zhang, Y.-W.; Tong, L. Trends of Precipitation Extremes during 1960–2008 in Xinjiang, the Northwest China. Theor. Appl. Climatol. 2013, 111, 133–148. [Google Scholar] [CrossRef]
- Espírito Santo, F.; Ramos, A.M.; De Lima, M.I.P.; Trigo, R.M. Seasonal Changes in Daily Precipitation Extremes in Mainland Portugal from 1941 to 2007. Reg. Environ. Change 2014, 14, 1765–1788. [Google Scholar] [CrossRef]
- De Lima, M.I.P.; Santo, F.E.; Ramos, A.M.; Trigo, R.M. Trends and Correlations in Annual Extreme Precipitation Indices for Mainland Portugal, 1941–2007. Theor. Appl. Climatol. 2015, 119, 55–75. [Google Scholar] [CrossRef]
- Panda, D.K.; Panigrahi, P.; Mohanty, S.; Mohanty, R.K.; Sethi, R.R. The 20th Century Transitions in Basic and Extreme Monsoon Rainfall Indices in India: Comparison of the ETCCDI Indices. Atmos. Res. 2016, 181, 220–235. [Google Scholar] [CrossRef]
- Yin, H.; Sun, Y. Characteristics of Extreme Temperature and Precipitation in China in 2017 Based on ETCCDI Indices. Adv. Clim. Change Res. 2018, 9, 218–226. [Google Scholar] [CrossRef]
- Manikandan, N.; Das, D.K.; Mukherjee, J.; Sehgal, V.K.; Krishnan, P. Extreme Temperature and Rainfall Events in National Capital Region of India (New Delhi) in the Recent Decades and Its Possible Impacts. Theor. Appl. Climatol. 2019, 137, 1703–1713. [Google Scholar] [CrossRef]
- Anagnostopoulou, C.; Tolika, K. Extreme Precipitation in Europe: Statistical Threshold Selection Based on Climatological Criteria. Theor. Appl. Climatol. 2012, 107, 479–489. [Google Scholar] [CrossRef]
- Chervenkov, H.; Slavov, K. ETCCDI Climate Indices for Assessment of the Recent Climate over Southeast Europe. In Advances in High Performance Computing; Dimov, I., Fidanova, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 902, pp. 398–412. [Google Scholar] [CrossRef]
- Cooley, A.K.; Chang, H. Detecting Change in Precipitation Indices Using Observed (1977–2016) and Modeled Future Climate Data in Portland, Oregon, USA. J. Water Clim. Change 2021, 12, 1135–1153. [Google Scholar] [CrossRef]
- Alexander, L.V.; Arblaster, J.M. Historical and Projected Trends in Temperature and Precipitation Extremes in Australia in Observations and CMIP5. Weather. Clim. Extrem. 2017, 15, 34–56. [Google Scholar] [CrossRef]
- McPhillips, L.E.; Chang, H.; Chester, M.V.; Depietri, Y.; Friedman, E.; Grimm, N.B.; Kominoski, J.S.; McPhearson, T.; Méndez-Lázaro, P.; Rosi, E.J.; et al. Defining Extreme Events: A Cross-Disciplinary Review. Earth’s Future 2018, 6, 441–455. [Google Scholar] [CrossRef]
- Gimeno, L.; Sorí, R.; Vázquez, M.; Stojanovic, M.; Algarra, I.; Eiras-Barca, J.; Gimeno-Sotelo, L.; Nieto, R. Extreme Precipitation Events. WIREs Water 2022, 9, e1611. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. Available online: https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (accessed on 8 July 2024).
- Thom, H.C.S. A Note on the Gamma Distribution. Mon. Weather. Rev. 1958, 86, 117–122. [Google Scholar] [CrossRef]
- Satyanarayana, D. Study of Test for Significance of Pearson’s Correlation Coefficient. Int. J. Multidiscip. Educ. Res. 2022, 11, 86–89. Available online: http://ijmer.s3.amazonaws.com/pdf/volume11/volume11-issue2(1)/15.pdf (accessed on 8 July 2024).
- Pal, M.; Bharati, P. Introduction to Correlation and Linear Regression Analysis. In Applications of Regression Techniques; Springer: Singapore, 2019; pp. 1–18. [Google Scholar] [CrossRef]
- Li, H.; Gao, Y.; Hou, E. Spatial and Temporal Variation of Precipitation during 1960–2015 in Northwestern China. Nat. Hazards 2021, 109, 2173–2196. [Google Scholar] [CrossRef]
- Tabari, H.; Abghari, H.; Hosseinzadeh Talaee, P. Temporal Trends and Spatial Characteristics of Drought and Rainfall in Arid and Semiarid Regions of Iran. Hydrol. Process. 2012, 26, 3351–3361. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Temporal Variability of Precipitation over Iran: 1966–2005. J. Hydrol. 2011, 396, 313–320. [Google Scholar] [CrossRef]
- Dhar, O.N.; Rakhecha, P.R. Foreshadowing Northeast Monsoon Rainfall Over Tamil Nadu, India. Mon. Weather. Rev. 1983, 111, 109–112. [Google Scholar] [CrossRef]
- Abd-Elhamid, H.F.; Zeleňáková, M.; Soľáková, T.; Saleh, O.K.; El-Dakak, A.M. Monitoring Flood and Drought Risks in Arid and Semi-Arid Regions Using Remote Sensing Data and Standardized Precipitation Index: A Case Study of Syria. J. Flood Risk Manag. 2024, 17, e12961. [Google Scholar] [CrossRef]
- Bony, S.; Colman, R.; Kattsov, V.M.; Allan, R.P.; Bretherton, C.S.; Dufresne, J.-L.; Hall, A.; Hallegatte, S.; Holland, M.M.; Ingram, W.; et al. How Well Do We Understand and Evaluate Climate Change Feedback Processes? J. Clim. 2006, 19, 3445–3482. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W. Estimating Extremes in Transient Climate Change Simulations. J. Clim. 2005, 18, 1156–1173. [Google Scholar] [CrossRef]
- Sun, Y.; Solomon, S.; Dai, A.; Portmann, R.W. How Often Will It Rain? J. Clim. 2007, 20, 4801–4818. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The Changing Character of Precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Wilby, R.L.; Wigley, T.M.L. Future Changes in the Distribution of Daily Precipitation Totals across North America. Geophys. Res. Lett. 2002, 29, 39-1–39-4. [Google Scholar] [CrossRef]
- Malmgren, B.A.; Hullugalla, R.; Lindeberg, G.; Inoue, Y.; Hayashi, Y.; Mikami, T. Oscillatory Behavior of Monsoon Rainfall over Sri Lanka during the Late 19th and 20th Centuries and Its Relationships to SSTs in the Indian Ocean and ENSO. Theor. Appl. Climatol. 2007, 89, 115–125. [Google Scholar] [CrossRef]
- Kajakokulan, P.; Pathirana, G.; Dheerasinghe, M.; Edirisooriya, I. Influence of Indian Ocean Warming on Rainfall of Sri Lanka. Int. J. Climatol. 2023, 43, 4917–4926. [Google Scholar] [CrossRef]
- Khan, S.; Piao, S.; Zheng, G.; Khan, I.U.; Bradley, D.; Khan, S.; Song, Y. Sea Surface Temperature Variability over the Tropical Indian Ocean during the ENSO and IOD Events in 2016 and 2017. Atmosphere 2021, 12, 587. [Google Scholar] [CrossRef]
- Chakraborty, A.; Singhai, P. Asymmetric Response of the Indian Summer Monsoon to Positive and Negative Phases of Major Tropical Climate Patterns. Sci. Rep. 2021, 11, 22561. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Carpenter, T.H. Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Mon. Weather. Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef]
- Zubair, L.; Ropelewski, C.F. The Strengthening Relationship between ENSO and Northeast Monsoon Rainfall over Sri Lanka and Southern India. J. Clim. 2006, 19, 1567–1575. [Google Scholar] [CrossRef]
- Yue, Z.; Zhou, W.; Li, T. Impact of the Indian Ocean Dipole on Evolution of the Subsequent ENSO: Relative Roles of Dynamic and Thermodynamic Processes. J. Clim. 2021, 34, 3591–3607. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Yamagata, T. A Look at the Relationship between the ENSO and the Indian Ocean Dipole. J. Meteorol. Soc. Jpn. Ser. II 2003, 81, 41–56. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Saji, N.H.; Yamagata, T. Individual and Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. J. Clim. 2004, 17, 3141–3155. [Google Scholar] [CrossRef]
- Xie, S.-P.; Kosaka, Y.; Du, Y.; Hu, K.; Chowdary, J.S.; Huang, G. Indo-Western Pacific Ocean Capacitor and Coherent Climate Anomalies in Post-ENSO Summer: A Review. Adv. Atmos. Sci. 2016, 33, 411–432. [Google Scholar] [CrossRef]
- Marathe, S.; Terray, P.; Karumuri, A. Tropical Indian Ocean and ENSO Relationships in a Changed Climate. Clim. Dyn. 2021, 56, 3255–3276. [Google Scholar] [CrossRef]
- Jin, Y.; Meng, X.; Zhang, L.; Zhao, Y.; Cai, W.; Wu, L. The Indian Ocean Weakens the ENSO Spring Predictability Barrier: Role of the Indian Ocean Basin and Dipole Modes. J. Clim. 2023, 36, 8331–8345. [Google Scholar] [CrossRef]
- Jayawardena, I.M.S.P.; Darshika, D.W.T.T.; Herath, H.M.R.C. Recent Trends in Climate Extreme Indices over Sri Lanka. Am. J. Clim. Change 2018, 7, 586–599. [Google Scholar] [CrossRef]
- Marengo, J.A.; Ambrizzi, T.; Alves, L.M.; Barreto, N.J.C.; Simões Reboita, M.; Ramos, A.M. Changing Trends in Rainfall Extremes in the Metropolitan Area of São Paulo: Causes and Impacts. Front. Clim. 2020, 2, 3. [Google Scholar] [CrossRef]
- Nagamuthu, P. The Pattern of Spatial and Temporal Variations of Rainfall in the Northern Province of Sri Lanka, 1972–2014. J. Environ. Earth Sci. 2019, 5, 179–189. Available online: https://core.ac.uk/download/pdf/234664351.pdf (accessed on 2 August 2024).
- Nagamuthu, P.; Weng, C.N. Convectional Influences on The Weather Pattern of Northern Sri Lanka. In Innovation and Transformation in Humanities for a Sustainable Tomorrow; European Proceedings of Social and Behavioural Sciences; European Proceedings: London, UK, 2020; Volume 89, pp. 477–487. [Google Scholar] [CrossRef]
- Prakash, S.; Mahesh, C.; Sathiyamoorthy, V.; Gairola, R.M. Increasing Trend of Northeast Monsoon Rainfall over the Equatorial Indian Ocean and Peninsular India. Theor. Appl. Climatol. 2013, 112, 185–191. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the Regional Pattern of Projected Future Changes in Extreme Precipitation. Nat. Clim. Change 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Li, P.; Yu, Z.; Jiang, P.; Wu, C. Spatiotemporal Characteristics of Regional Extreme Precipitation in Yangtze River Basin. J. Hydrol. 2021, 603, 126910. [Google Scholar] [CrossRef]
- Utsumi, N.; Seto, S.; Kanae, S.; Maeda, E.E.; Oki, T. Does Higher Surface Temperature Intensify Extreme Precipitation? Geophys. Res. Lett. 2011, 38, L16708. [Google Scholar] [CrossRef]
- Mishra, V.; Wallace, J.M.; Lettenmaier, D.P. Relationship between Hourly Extreme Precipitation and Local Air Temperature in the United States. Geophys. Res. Lett. 2012, 39, L16403. [Google Scholar] [CrossRef]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and Dynamics of the Intertropical Convergence Zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, V.; Yasunari, T. Interannual Variability of Atmospheric Water Balance over South Peninsular India and Sri Lanka during Northeast Monsoon Season. Int. J. Climatol. 2008, 28, 1997–2009. [Google Scholar] [CrossRef]
- Schott, F.; Reppin, J.; Fischer, J.; Quadfasel, D. Currents and Transports of the Monsoon Current South of Sri Lanka. J. Geophys. Res. Ocean. 1994, 99, 25127–25141. [Google Scholar] [CrossRef]
- Romatschke, U.; Houze, R.A. Characteristics of Precipitating Convective Systems in the Premonsoon Season of South Asia. J. Hydrometeorol. 2011, 12, 157–180. [Google Scholar] [CrossRef]
- Balaguru, K.; Taraphdar, S.; Leung, L.R.; Foltz, G.R. Increase in the Intensity of Postmonsoon Bay of Bengal Tropical Cyclones. Geophys. Res. Lett. 2014, 41, 3594–3601. [Google Scholar] [CrossRef]
Index | Descriptive Name | Definition | Units |
---|---|---|---|
PRCPTOT | Wet day precipitation | Annual total precipitation from wet days | mm |
SDII | Simple daily intensity index | Average precipitation on wet days | mm/d |
RX1day | Maximum 1-day precipitation | Annual maximum 1-day precipitation | mm |
R10mm | Precipitation days | Annual count of days when RR ≥ 10 | Days |
R20mm | Precipitation days | Annual count of days when RR ≥ 20 | Days |
R95p | Very wet day precipitation | Annual total precipitation when RR > 95th percentile daily precipitation | mm |
R99p | Extremely wet day precipitation | Annual total precipitation when RR > 99th percentile daily precipitation | mm |
CWD | Consecutive wet days | Maximum number of consecutive wet days | Days |
CDD | Consecutive dry days | Maximum number of consecutive dry days | Days |
SPI Range | Classification |
---|---|
2 or more | Extremely wet |
1.5–1.99 | Very wet |
1–1.49 | Moderately wet |
0.99–0.0 | Normal |
0.0 to −0.99 | Near normal |
−1 to −1.49 | Moderately dry |
−1.5 to −1.99 | Severely dry |
−2 and less | Extremely dry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, D.; Wang, X.; Han, Y.; Zhang, Y.; Dong, L.; Luo, H.; Xie, X.; Xu, D. Precipitation Characteristics and Mechanisms over Sri Lanka against the Background of the Western Indian Ocean: 1981–2020. Atmosphere 2024, 15, 962. https://doi.org/10.3390/atmos15080962
Ye D, Wang X, Han Y, Zhang Y, Dong L, Luo H, Xie X, Xu D. Precipitation Characteristics and Mechanisms over Sri Lanka against the Background of the Western Indian Ocean: 1981–2020. Atmosphere. 2024; 15(8):962. https://doi.org/10.3390/atmos15080962
Chicago/Turabian StyleYe, Dan, Xin Wang, Yong Han, Yurong Zhang, Li Dong, Hao Luo, Xinxin Xie, and Danya Xu. 2024. "Precipitation Characteristics and Mechanisms over Sri Lanka against the Background of the Western Indian Ocean: 1981–2020" Atmosphere 15, no. 8: 962. https://doi.org/10.3390/atmos15080962
APA StyleYe, D., Wang, X., Han, Y., Zhang, Y., Dong, L., Luo, H., Xie, X., & Xu, D. (2024). Precipitation Characteristics and Mechanisms over Sri Lanka against the Background of the Western Indian Ocean: 1981–2020. Atmosphere, 15(8), 962. https://doi.org/10.3390/atmos15080962