Characteristics of PM2.5 and CO2 Concentrations in Typical Functional Areas of a University Campus in Beijing Based on Low-Cost Sensor Monitoring
Abstract
:1. Introduction
2. Data and Methods
2.1. Campus and Its Typical Functional Zone Overview
2.2. Sampling
2.2.1. Sampling in Typical Residential Dormitory Environment
2.2.2. Sampling in Campus Typical Functional Area
2.2.3. Other Air Pollutant Data
3. Results and Discussions
3.1. Indoor and Outdoor Characteristics of PM2.5 and CO2 Concentrations
3.2. PM2.5 and CO2 Concentration Characteristics in Typical Campus Functional Areas
3.2.1. Office
3.2.2. Dormitory
3.2.3. Lake Ming
3.2.4. Canteen
3.2.5. Laboratory
3.3. The Impact of Surrounding Air Pollution on the Pollution within the Campus
3.4. Average Pollution Characteristics across Different Functional Areas on Campus
3.5. Variations in PM2.5 Concentration across Different Campus Functional Areas
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Afifa; Arshad, K.; Hussain, N.; Ashraf, M.H.; Saleem, M.Z. Air pollution and climate change as grand challenges to sustainability. Sci. Total Environ. 2024, 928, 172370. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.G.; Gustafson, W.I., Jr.; Easter, R.C.; Barnard, J.C.; Ghan, S.J.; Pekour, M.S.; Fast, J.D. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources. Atmos. Chem. Phys. 2009, 9, 945–964. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Y.; Cai, B.; Guo, J.; Cheng, T.; Zheng, F. Spatial characteristics of CO2 emissions and PM2.5 concentrations in China based on gridded data. Appl. Energy 2020, 266, 114852. [Google Scholar] [CrossRef]
- Mao, X.Q.; Zeng, A.; Hu, T.; Xing, Y.K.; Zhou, J.; Liu, Z.Y. Co-control of local air pollutants and CO2 from the Chinese coal-fired power industry. J. Clean. Prod. 2014, 67, 220–227. [Google Scholar] [CrossRef]
- Dong, F.; Yu, B.; Pan, Y. Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction: Evidence from China. J. Clean. Prod. 2019, 223, 759–771. [Google Scholar] [CrossRef]
- Yang, S.; Chen, B.; Ulgiati, S. Co-benefits of CO2 and PM2.5 Emission Reduction. Energy Procedia 2016, 104, 92–97. [Google Scholar] [CrossRef]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Azuma, K.; Kagi, N.; Yanagi, U.; Osawa, H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ. Int. 2018, 121, 51–56. [Google Scholar] [CrossRef]
- Apte, M.G.; Fisk, W.J.; Daisey, J.M. Associations between indoor CO2 concentrations and sick building syndrome symptoms in US office buildings: An analysis of the 1994–1996 BASE study data. Indoor Air 2000, 10, 246–257. [Google Scholar] [CrossRef]
- Tsai, D.H.; Lin, J.S.; Chan, C.C. Office Workers’ Sick Building Syndrome and Indoor Carbon Dioxide Concentrations. J. Occup. Environ. Hyg. 2012, 9, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Barron, A.R.; Selin, N.E.; Picciano, P.D.; Metz, L.E.; Reilly, J.M.; Jacoby, H.D. Meeting US greenhouse gas emissions goals with the international air pollution provision of the clean air act. Environ. Res. Lett. 2022, 17, 054019. [Google Scholar] [CrossRef]
- Li, Z.; Fung, J.C.H.; Lau, A.K.H. High spatiotemporal characterization of on-road PM2.5 concentrations in high-density urban areas using mobile monitoring. Build. Environ. 2018, 143, 196–205. [Google Scholar] [CrossRef]
- Fattoruso, G.; Nocerino, M.; Toscano, D.; Pariota, L.; Sorrentino, G.; Manna, V.; De Vito, S.; Cartenì, A.; Fabbricino, M.; Di Francia, G. Site Suitability Analysis for Low Cost Sensor Networks for Urban Spatially Dense Air Pollution Monitoring. Atmosphere 2020, 11, 1215. [Google Scholar] [CrossRef]
- Yin, F. Practice of Air Environment Quality Monitoring Data Visualization Technology Based on Adaptive Wireless Sensor Networks. Wirel. Commun. Mob. Comput. 2022, 2022, 4160186. [Google Scholar] [CrossRef]
- Liu, A.; Yi, J.; Ding, X.; Deng, J.; Wu, D.; Huo, Y.; Jiang, J.; Li, Q.; Chen, J. An online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plants. J. Hazard. Mater. 2022, 428, 128221. [Google Scholar] [CrossRef]
- Morawska, L.; Allen, J.; Bahnfleth, W.; Bennett, B.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.J.; Floto, A.; et al. Mandating indoor air quality for public buildings. Science 2024, 383, 1418–1420. [Google Scholar] [CrossRef]
- Zhao, D.; Miller, D.; Xian, X.; Tsow, F.; Forzani, E.S. A novel real-time carbon dioxide analyzer for health and environmental applications. Sens. Actuators B Chem. 2014, 195, 171–176. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Y.; Wang, Y.; Zhou, H.; Wu, M.; Li, T. An ultra-small integrated CO2 infrared gas sensor for wearable end-tidal CO2 monitoring. Iscience 2023, 26, 108293. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Creekmore, A. Emissions and exposure to NOx, CO, CO2 and PM2.5 from a gas stove using reference and low-cost sensors. Atmos. Environ. 2024, 331, 120564. [Google Scholar] [CrossRef]
- Keyes, T.; Domingo, R.; Dynowski, S.; Graves, R.; Klein, M.; Leonard, M.; Pilgrim, J.; Sanchirico, A.; Trinkaus, K. Low-cost PM2.5 sensors can help identify driving factors of poor air quality and benefit communities. Heliyon 2023, 9, e19876. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Y.; Xu, W.; Du, W.; Zhou, L.; Tang, G.; Chen, C.; Cheng, X.; Zhao, X.; Ji, D.; et al. Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China. Atmos. Chem. Phys. 2018, 18, 2495–2509. [Google Scholar] [CrossRef]
- Wang, Q.; Du, W.; Zhou, W.; Zhang, Y.; Xie, C.; Zhao, J.; Xu, W.; Tang, G.; Fu, P.; Wang, Z.; et al. Characteristics of sub-micron aerosols above the urban canopy in Beijing during warm seasons. Sci. Total Environ. 2024, 926, 171989. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, Y.; Jiang, Q.; Du, W.; Sun, C.; Fu, P.; Wang, Z. Chemical composition of aerosol particles and light extinction apportionment before and during heating season in Beijing, China. J. Geophys. Res. Atmos. 2015, 120, 12708–12722. [Google Scholar] [CrossRef]
- Basner, M.; Smith, M.G.; Jones, C.W.; Ecker, A.J.; Howard, K.; Schneller, V.; Cordoza, M.; Kaizi-Lutu, M.; Park-Chavar, S.; Stahn, A.C.; et al. Associations of bedroom PM2.5, CO2, temperature, humidity, and noise with sleep: An observational actigraphy study. Sleep Health 2023, 9, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Vu, T.V.; Harrison, R.M.; Yan, J.; Hu, X.; Cui, Y.; Shi, A.; Liu, X.; Shen, Y.; Zhang, G.; et al. Long-term characterization of roadside air pollutants in urban Beijing and associated public health implications. Environ. Res. 2022, 212, 113277. [Google Scholar] [CrossRef]
- Sun, Y.L.; Wang, Z.F.; Du, W.; Zhang, Q.; Wang, Q.Q.; Fu, P.Q.; Pan, X.L.; Li, J.; Jayne, J.; Worsnop, D.R. Long-term real-time measurements of aerosol particle composition in Beijing, China: Seasonal variations, meteorological effects, and source analysis. Atmos. Chem. Phys. 2015, 15, 10149–10165. [Google Scholar] [CrossRef]
- Jeong, N.-R.; Han, S.-W.; Kim, J.-H. Evaluation of Vegetation Configuration Models for Managing Particulate Matter along the Urban Street Environment. Forests 2022, 13, 46. [Google Scholar] [CrossRef]
- Dolislager, L.J.; VanCuren, R.; Pederson, J.R.; Lashgari, A.; McCauley, E. A summary of the Lake Tahoe Atmospheric Deposition Study (LTADS). Atmos. Environ. 2012, 46, 618–630. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.H.; Zhang, Q.; Zhai, S.X. A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 2019, 12, 906–910. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Gao, W.; Tang, G.; Hu, B.; Ma, Z.; Wang, Y. Insight into the formation and evolution of secondary organic aerosol in the megacity of Beijing, China. Atmos. Environ. 2020, 220, 117070. [Google Scholar] [CrossRef]
- Li, Y.J.; Sun, Y.; Zhang, Q.; Li, X.; Li, M.; Zhou, Z.; Chan, C.K. Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmos. Environ. 2017, 158, 270–304. [Google Scholar] [CrossRef]
- Kobza, J.; Geremek, M. Do the pollution related to high-traffic roads in urbanised areas pose a significant threat to the local population? Environ. Monit. Assess. 2016, 189, 33. [Google Scholar] [CrossRef]
- Jia, W.; Li, L.; Zhu, L.; Lei, Y.; Wu, S.; Dong, Z. The synergistic effects of PM2.5 and CO2 from China’s energy consumption. Sci. Total Environ. 2024, 908, 168121. [Google Scholar] [CrossRef]
- Dai, X.; Liu, J.; Li, X.; Zhao, L. Long-term monitoring of indoor CO2 and PM2.5 in Chinese homes: Concentrations and their relationships with outdoor environments. Build. Environ. 2018, 144, 238–247. [Google Scholar] [CrossRef]
- Morawska, L.; Allen, J.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.J.; Floto, A.; Franchimon, F.; et al. A paradigm shift to combat indoor respiratory infection. Science 2021, 372, 689–691. [Google Scholar] [CrossRef] [PubMed]
Non-Heating Season | Heating Season | ||||
---|---|---|---|---|---|
R2 | Slope | R2 | Slope | ||
NO2_GY vs. PM2.5_GY | Office | 0.95 | 2.12 | 0.66 | 0.82 |
Dormitory | 0.5 | 1.54 | 0.85 | 0.24 | |
Lake Ming | 0.44 | 0.90 | 0.64 | −0.94 | |
Canteen | 0.99 | 2.61 | 0.90 | 0.75 | |
Laboratory | 0.29 | 0.75 | 0.62 | 1.47 | |
O3_GY vs. PM2.5_GY | Office | 0.95 | −4.72 | 0.21 | −0.37 |
Dormitory | 0.41 | −1.42 | 0.97 | −0.34 | |
Lake Ming | 0.98 | −4.05 | 0.74 | 1.10 | |
Canteen | 0.94 | −6.99 | 0.57 | −0.78 | |
Laboratory | 0.10 | −0.59 | 0.46 | −1.12 | |
PM2.5_BJTU vs. PM2.5_ GY | Office | 0.11 | −0.20 | 0.91 | 0.28 |
Dormitory | 0.49 | 0.71 | 0.89 | 0.08 | |
Lake Ming | 0.21 | −0.45 | 0.86 | 0.58 | |
Canteen | 0.82 | 1.35 | 0.78 | 0.40 | |
Laboratory | 0.94 | 0.56 | 0.85 | 0.37 | |
CO2_BJTU vs. CO_GY | Office | 0.89 | 215 | 0.51 | 112.67 |
Dormitory | 0.18 | 1585.71 | 0.63 | −2490.38 | |
Lake Ming | 0.27 | 152.50 | 0.64 | −226.43 | |
Canteen | 0.62 | 128.57 | 0.26 | 10.90 | |
Laboratory | 0.81 | 130.31 | 0.77 | 138.49 | |
CO2_BJTU vs. PM2.5_BJTU | Office | 0.19 | −3.32 | 0.48 | 4.79 |
Dormitory | 0.07 | −22.82 | 0.81 | −102.95 | |
Lake Ming | 0.39 | 2.62 | 0.34 | −6.53 | |
Canteen | 0.44 | 3.45 | 0.41 | 1.64 | |
Laboratory | 0.73 | 3.00 | 0.69 | 4.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Ao, R.; Chen, H.; Li, J.; Wei, L.; Wang, Z. Characteristics of PM2.5 and CO2 Concentrations in Typical Functional Areas of a University Campus in Beijing Based on Low-Cost Sensor Monitoring. Atmosphere 2024, 15, 1044. https://doi.org/10.3390/atmos15091044
Wang Q, Ao R, Chen H, Li J, Wei L, Wang Z. Characteristics of PM2.5 and CO2 Concentrations in Typical Functional Areas of a University Campus in Beijing Based on Low-Cost Sensor Monitoring. Atmosphere. 2024; 15(9):1044. https://doi.org/10.3390/atmos15091044
Chicago/Turabian StyleWang, Qingqing, Ruoxi Ao, Hongwei Chen, Jialin Li, Lianfang Wei, and Zifa Wang. 2024. "Characteristics of PM2.5 and CO2 Concentrations in Typical Functional Areas of a University Campus in Beijing Based on Low-Cost Sensor Monitoring" Atmosphere 15, no. 9: 1044. https://doi.org/10.3390/atmos15091044
APA StyleWang, Q., Ao, R., Chen, H., Li, J., Wei, L., & Wang, Z. (2024). Characteristics of PM2.5 and CO2 Concentrations in Typical Functional Areas of a University Campus in Beijing Based on Low-Cost Sensor Monitoring. Atmosphere, 15(9), 1044. https://doi.org/10.3390/atmos15091044