Chaotic Measures as an Alternative to Spectral Measures for Analysing Turbulent Flow
Abstract
:1. Introduction
Advantages of Chaotic Measures Applied to Turbulence
2. Chaotic Measures of Turbulence
2.1. Lyapunov Exponents
2.2. KS Entropy
3. Theoretical Predictions
3.1. Theory of Lorenz
3.2. Theory of Ruelle
3.3. Multifractal Corrections
3.4. Predictions for Attractor Dimension and KS Entropy
3.5. Two Dimensional Turbulence
4. Results from Simulations
4.1. Assessing Theoretical Predictions
4.1.1. Ruelle’s Prediction
4.1.2. KS Entropy and the Lyapunov Spectrum
4.2. Predictability
4.2.1. Error Spectrum
4.2.2. Cascades of Error
4.2.3. Linear Growth of Error
4.2.4. FTLE Statistics
4.3. Efficient Simulation
4.4. Insights
4.4.1. Theoretical Extensions
4.4.2. Changes in System Dimension
4.4.3. Importance of Vortex Stretching
4.4.4. MHD
5. Discussion and Conclusions
- Turbulence is a multiscale phenomena both spatially and temporally. This is true even in chaos, where the different timescales interact to lead to a long-term large length scale predictability co-existing with increasingly rapid error growth at the smallest scales.
- The Eulerian chaos and vortex stretching appear to be fundamentally linked, and may contribute to the changes seen in different dimensions.
- The Lyapunov spectrum may emerge as a practical measure for a complete description of the fluid flow.
- Chaotic measures, especially the maximum Lyapunov exponent, are more stable than spectral quantities and show spatial features that are hard to discern from spectral quantities alone.
- By using chaotic measures, we can quantify simulations in a model-free way that does not rely on a priori unknown spectral quantities and thus improve computational efficiency.
- Chaotic measures can be used to detect phase transitions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McComb, W.D. The Physics of Fluid Turbulence; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- McComb, W.D. Homogeneous, Isotropic Turbulence: Phenomenology, Renormalization and Statistical Closures; OUP Oxford: Oxford, UK, 2014; Volume 162. [Google Scholar]
- Kraichnan, R.H. The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 1959, 5, 497–543. [Google Scholar] [CrossRef]
- Zhou, Y. Turbulence theories and statistical closure approaches. Phys. Rep. 2021, 935, 1–117. [Google Scholar]
- Taylor, G.I. The spectrum of turbulence. Proc. R. Soc. London. Ser. Math. Phys. Sci. 1938, 164, 476–490. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds. Dokl. Akad. Nauk. SSSR 1941, 30, 301. [Google Scholar]
- Kolmogorov, A.N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 1962, 13, 82–85. [Google Scholar] [CrossRef]
- Frisch, U. Turbulence: The Legacy of an Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Qian, J. Inertial range and the finite Reynolds number effect of turbulence. Phys. Rev. E 1997, 55, 337. [Google Scholar] [CrossRef]
- Qian, J. Slow decay of the finite Reynolds number effect of turbulence. Phys. Rev. E 1999, 60, 3409. [Google Scholar] [CrossRef] [PubMed]
- Sagaut, P.; Cambon, C. Homogeneous Turbulence Dynamics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 15. [Google Scholar]
- Deissler, R. Is Navier–Stokes turbulence chaotic? Phys. Fluids 1986, 29, 1453–1457. [Google Scholar] [CrossRef]
- Bohr, T.; Jensen, M.H.; Paladin, G.; Vulpiani, A. Dynamical Systems Approach to Turbulence; Cambridge University Press & Assessment: Cambridge, UK, 1998. [Google Scholar]
- Taylor, G.I. Diffusion by continuous movements. Proc. Lond. Math. Soc. 1922, 2, 196–212. [Google Scholar] [CrossRef]
- Richardson, L.F. Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. London. Ser. Contain. Pap. Math. Phys. Character 1926, 110, 709–737. [Google Scholar]
- Salazar, J.P.; Collins, L.R. Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 2009, 41, 405–432. [Google Scholar] [CrossRef]
- Biferale, L.; Boffetta, G.; Celani, A.; Devenish, B.; Lanotte, A.; Toschi, F. Lagrangian statistics of particle pairs in homogeneous isotropic turbulence. Phys. Fluids 2005, 17, 115101. [Google Scholar] [CrossRef]
- Haller, G. Lagrangian coherent structures. Annu. Rev. Fluid Mech. 2015, 47, 137–162. [Google Scholar] [CrossRef]
- Ottino, J.M. Mixing, chaotic advection, and turbulence. Annu. Rev. Fluid Mech. 1990, 22, 207–254. [Google Scholar] [CrossRef]
- Eckhardt, B.; Schneider, T.M.; Hof, B.; Westerweel, J. Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 2007, 39, 447–468. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Lorenz, E.N. The predictability of a flow which possesses many scales of motion. Tellus 1969, 21, 289–307. [Google Scholar] [CrossRef]
- Aurell, E.; Boffetta, G.; Crisanti, A.; Paladin, G.; Vulpiani, A. Predictability in the large: An extension of the concept of Lyapunov exponent. J. Phys. Math. Gen. 1997, 30, 1. [Google Scholar] [CrossRef]
- Leith, C. Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci. 1971, 28, 145–161. [Google Scholar] [CrossRef]
- Leith, C.; Kraichnan, R. Predictability of turbulent flows. J. Atmos. Sci. 1972, 29, 1041–1058. [Google Scholar] [CrossRef]
- Boffetta, G.; Cencini, M.; Falcioni, M.; Vulpiani, A. Predictability: A way to characterize complexity. Phys. Rep. 2002, 356, 367–474. [Google Scholar] [CrossRef]
- Nazarenko, S. Wave Turbulence; Springer: Berlin/Heidelberg, Germany, 2011; Volume 825. [Google Scholar]
- Korotkevich, A.O. Inverse cascade spectrum of gravity waves in the presence of a condensate: A direct numerical simulation. Phys. Rev. Lett. 2023, 130, 264002. [Google Scholar] [CrossRef] [PubMed]
- Falcon, E.; Mordant, N. Experiments in surface gravity–capillary wave turbulence. Annu. Rev. Fluid Mech. 2022, 54, 1–25. [Google Scholar] [CrossRef]
- Pan, Y.; Yue, D.K. Direct numerical investigation of turbulence of capillary waves. Phys. Rev. Lett. 2014, 113, 094501. [Google Scholar] [CrossRef]
- Kochurin, E.; Ricard, G.; Zubarev, N.; Falcon, E. Three-dimensional direct numerical simulation of free-surface magnetohydrodynamic wave turbulence. Phys. Rev. E 2022, 105, L063101. [Google Scholar] [CrossRef] [PubMed]
- Ricard, G.; Falcon, E. Transition from wave turbulence to acousticlike shock-wave regime. Phys. Rev. Fluids 2023, 8, 014804. [Google Scholar] [CrossRef]
- Griffin, A.; Krstulovic, G.; L’vov, V.S.; Nazarenko, S. Energy spectrum of two-dimensional acoustic turbulence. Phys. Rev. Lett. 2022, 128, 224501. [Google Scholar] [CrossRef]
- Kochurin, E.A.; Kuznetsov, E.A. Direct numerical simulation of acoustic turbulence: Zakharov–Sagdeev spectrum. JETP Lett. 2022, 116, 863–868. [Google Scholar] [CrossRef]
- Oseledec, V.I. A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 1968, 19, 197–231. [Google Scholar]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Dettmann, C.P.; Morriss, G. Proof of Lyapunov exponent pairing for systems at constant kinetic energy. Phys. Rev. E 1996, 53, R5545. [Google Scholar] [CrossRef]
- Boffetta, G.; Musacchio, S. Chaos and predictability of homogeneous-isotropic turbulence. Phys. Rev. Lett. 2017, 119, 054102. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, J.P.; Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985, 57, 617. [Google Scholar] [CrossRef]
- Schuster, H.G.; Just, W. Deterministic Chaos: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kaplan, J.; Yorke, J. Functional differential equations and approximation of fixed points. Lect. Notes Math. 1979, 730, 204–227. [Google Scholar]
- Frederickson, P.; Kaplan, J.L.; Yorke, E.D.; Yorke, J.A. The Liapunov dimension of strange attractors. J. Differ. Equ. 1983, 49, 185–207. [Google Scholar] [CrossRef]
- Ruelle, D. Microscopic fluctuations and turbulence. Phys. Lett. A 1979, 72, 81–82. [Google Scholar] [CrossRef]
- Fouxon, I.; Feinberg, J.; Käpylä, P.; Mond, M. Reynolds number dependence of Lyapunov exponents of turbulence and fluid particles. Phys. Rev. E 2021, 103, 033110. [Google Scholar] [CrossRef] [PubMed]
- Crisanti, A.; Jensen, M.; Vulpiani, A.; Paladin, G. Intermittency and predictability in turbulence. Phys. Rev. Lett. 1993, 70, 166. [Google Scholar] [CrossRef]
- Mohan, P.; Fitzsimmons, N.; Moser, R.D. Scaling of Lyapunov exponents in homogeneous isotropic turbulence. Phys. Rev. Fluids 2017, 2, 114606. [Google Scholar] [CrossRef]
- Landau, L. Em lifshitz, fluid mechanics. In Course of Theoretical Physics; Elsevier: Amsterdam, The Netherlands, 1959; Volume 6. [Google Scholar]
- Ruelle, D. Large volume limit of the distribution of characteristic exponents in turbulence. Commun. Math. Phys. 1982, 87, 287–302. [Google Scholar] [CrossRef]
- Constantin, P.; Foias, C.; Manley, O.P.; Temam, R. Determining modes and fractal dimension of turbulent flows. J. Fluid Mech. 1985, 150, 427–440. [Google Scholar] [CrossRef]
- Gibbon, J.D.; Titi, E. Attractor dimension and small length scale estimates for the three-dimensional Navier-Stokes equations. Nonlinearity 1997, 10, 109. [Google Scholar] [CrossRef]
- Meneveau, C.; Nelkin, M. Attractor size in intermittent turbulence. Phys. Rev. A 1989, 39, 3732. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, G.K. Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 1969, 12, II-233. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Inertial ranges in two-dimensional turbulence. Phys. Fluids 1967, 10, 1417. [Google Scholar] [CrossRef]
- Leith, C.E. Diffusion approximation for two-dimensional turbulence. Phys. Fluids 1968, 11, 671–672. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Inertial-range transfer in two-and three-dimensional turbulence. J. Fluid Mech. 1971, 47, 525–535. [Google Scholar] [CrossRef]
- Ohkitani, K. Log-corrected energy spectrum and dimension of attractor in two-dimensional turbulence. Phys. Fluids Fluid Dyn. 1989, 1, 451–452. [Google Scholar] [CrossRef]
- Lieb, E.H. On characteristic exponents in turbulence. Commun. Math. Phys. 1984, 92, 473–480. [Google Scholar] [CrossRef]
- Berera, A.; Ho, R.D. Chaotic properties of a turbulent isotropic fluid. Phys. Rev. Lett. 2018, 120, 024101. [Google Scholar] [CrossRef]
- Aurell, E.; Boffetta, G.; Crisanti, A.; Paladin, G.; Vulpiani, A. Growth of noninfinitesimal perturbations in turbulence. Phys. Rev. Lett. 1996, 77, 1262. [Google Scholar] [CrossRef]
- Ho, R.D.; Armua, A.; Berera, A. Fluctuations of Lyapunov exponents in homogeneous and isotropic turbulence. Phys. Rev. Fluids 2020, 5, 024602. [Google Scholar] [CrossRef]
- Mukherjee, S.; Schalkwijk, J.; Jonker, H.J. Predictability of dry convective boundary layers: An LES study. J. Atmos. Sci. 2016, 73, 2715–2727. [Google Scholar] [CrossRef]
- Budanur, N.B.; Kantz, H. Scale-dependent error growth in Navier-Stokes simulations. Phys. Rev. E 2022, 106, 045102. [Google Scholar] [CrossRef] [PubMed]
- Bandak, D.; Mailybaev, A.A.; Eyink, G.L.; Goldenfeld, N. Spontaneous stochasticity amplifies even thermal noise to the largest scales of turbulence in a few eddy turnover times. Phys. Rev. Lett. 2024, 132, 104002. [Google Scholar] [CrossRef]
- Murugan, S.D.; Kumar, D.; Bhattacharjee, S.; Ray, S.S. Many-body chaos in thermalized fluids. Phys. Rev. Lett. 2021, 127, 124501. [Google Scholar] [CrossRef]
- McComb, W.; Berera, A.; Yoffe, S.; Linkmann, M. Energy transfer and dissipation in forced isotropic turbulence. Phys. Rev. E 2015, 91, 043013. [Google Scholar] [CrossRef]
- Boffetta, G.; Celani, A.; Crisanti, A.; Vulpiani, A. Predictability in two-dimensional decaying turbulence. Phys. Fluids 1997, 9, 724–734. [Google Scholar] [CrossRef]
- Ge, J.; Rolland, J.; Vassilicos, J.C. The production of uncertainty in three-dimensional Navier–Stokes turbulence. J. Fluid Mech. 2023, 977, A17. [Google Scholar] [CrossRef]
- Berera, A.; Clark, D. Information production in homogeneous isotropic turbulence. Phys. Rev. E 2019, 100, 041101. [Google Scholar] [CrossRef]
- Hassanaly, M.; Raman, V. Lyapunov spectrum of forced homogeneous isotropic turbulent flows. Phys. Rev. Fluids 2019, 4, 114608. [Google Scholar] [CrossRef]
- Hassanaly, M.; Raman, V. Numerical convergence of the Lyapunov spectrum computed using low Mach number solvers. J. Comput. Phys. 2019, 386, 467–485. [Google Scholar] [CrossRef]
- Keefe, L.; Moin, P.; Kim, J. The dimension of attractors underlying periodic turbulent Poiseuille flow. J. Fluid Mech. 1992, 242, 1–29. [Google Scholar] [CrossRef]
- Clark, D.; Tarra, L.; Berera, A. Chaos and information in two-dimensional turbulence. Phys. Rev. Fluids 2020, 5, 064608. [Google Scholar] [CrossRef]
- Vasey, G.; Messenger, D.; Bortz, D.; Christlieb, A.; O’Shea, B. Influence of initial conditions on data-driven model identification and information entropy for ideal mhd problems. arXiv 2023, arXiv:2312.05339. [Google Scholar]
- Yoshimatsu, K.; Ariki, T. Error growth in three-dimensional homogeneous turbulence. J. Phys. Soc. Jpn. 2019, 88, 124401. [Google Scholar] [CrossRef]
- Waleffe, F. The nature of triad interactions in homogeneous turbulence. Phys. Fluids Fluid Dyn. 1992, 4, 350–363. [Google Scholar] [CrossRef]
- Biferale, L.; Musacchio, S.; Toschi, F. Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 2012, 108, 164501. [Google Scholar] [CrossRef]
- Linkmann, M.; Berera, A.; McKay, M.; Jäger, J. Helical mode interactions and spectral transfer processes in magnetohydrodynamic turbulence. J. Fluid Mech. 2016, 791, 61–96. [Google Scholar] [CrossRef]
- Rotunno, R.; Snyder, C. A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci. 2008, 65, 1063–1076. [Google Scholar] [CrossRef]
- Thompson, P.D. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus 1957, 9, 275–295. [Google Scholar] [CrossRef]
- Durran, D.R.; Gingrich, M. Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci. 2014, 71, 2476–2488. [Google Scholar] [CrossRef]
- Clark, D.; Armua, A.; Ho, R.D.; Berera, A. Critical transition to a non-chaotic regime in isotropic turbulence. J. Fluid Mech. 2022, 930, A17. [Google Scholar] [CrossRef]
- Ho, R.D.; Berera, A.; Clark, D. Chaotic behavior of Eulerian magnetohydrodynamic turbulence. Phys. Plasmas 2019, 26, 042303. [Google Scholar] [CrossRef]
- Pandey, L.K.; Dwivedi, S.; Martin, M. Short-term predictability of the Bay of Bengal region using a high-resolution Indian ocean model. Mar. Geod. 2021, 44, 215–237. [Google Scholar] [CrossRef]
- Sterk, A.; Holland, M.; Rabassa, P.; Broer, H.; Vitolo, R. Predictability of extreme values in geophysical models. Nonlinear Process. Geophys. 2012, 19, 529–539. [Google Scholar] [CrossRef]
- Wang, M.; Zaki, T.A. Synchronization of turbulence in channel flow. J. Fluid Mech. 2022, 943, A4. [Google Scholar] [CrossRef]
- Fernandez, P.; Wang, Q. Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization. J. Comput. Phys. 2017, 350, 453–469. [Google Scholar] [CrossRef]
- Leonard, A. Energy cascade in large-eddy simulations of turbulent fluid flows. In Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 1975; Volume 18, pp. 237–248. [Google Scholar]
- Bae, H.J.; Lozano-Duran, A. Numerical and modeling error assessment of large-eddy simulation using direct-numerical-simulation-aided large-eddy simulation. arXiv 2022, arXiv:2208.02354. [Google Scholar]
- Nastac, G.; Labahn, J.W.; Magri, L.; Ihme, M. Lyapunov exponent as a metric for assessing the dynamic content and predictability of large-eddy simulations. Phys. Rev. Fluids 2017, 2, 094606. [Google Scholar] [CrossRef]
- Wu, H.; Ma, P.C.; Lv, Y.; Ihme, M. Lyapunov exponent and Wasserstein metric as validation tools for assessing short-time dynamics and quantitative model evaluation of large-eddy simulation. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; p. 0440. [Google Scholar]
- Engelmann, L.; Ihme, M.; Wlokas, I.; Kempf, A. Towards the suitability of information entropy as an LES quality indicator. Flow Turbul. Combust. 2022, 108, 353–385. [Google Scholar] [CrossRef]
- Kantarakias, K.D.; Papadakis, G. Sensitivity analysis of chaotic systems using a frequency-domain shadowing approach. J. Comput. Phys. 2023, 474, 111757. [Google Scholar] [CrossRef]
- Inubushi, M.; Saiki, Y.; Kobayashi, M.U.; Goto, S. Characterizing Small-Scale Dynamics of Navier-Stokes Turbulence with Transverse Lyapunov Exponents: A Data Assimilation Approach. Phys. Rev. Lett. 2023, 131, 254001. [Google Scholar] [CrossRef] [PubMed]
- Magri, L.; Doan, N.A.K. Physics-informed data-driven prediction of turbulent reacting flows with Lyapunov analysis and sequential data assimilation. In Data Analysis for Direct Numerical Simulations of Turbulent Combustion: From Equation-Based Analysis to Machine Learning; Springer: Berlin/Heidelberg, Germany, 2020; pp. 177–196. [Google Scholar]
- Li, Y.C.; Ho, R.D.; Berera, A.; Feng, Z. Superfast amplification and superfast nonlinear saturation of perturbations as a mechanism of turbulence. J. Fluid Mech. 2020, 904, A27. [Google Scholar] [CrossRef]
- Eyink, G.L.; Bandak, D. Renormalization group approach to spontaneous stochasticity. Phys. Rev. Res. 2020, 2, 043161. [Google Scholar] [CrossRef]
- Ho, R.D. High dimensional chaotic systems which behave like random walks in state space. arXiv 2019, arXiv:1908.05989. [Google Scholar]
- Singh, R.K.; Mukherjee, S.; Ray, S.S. Lagrangian manifestation of anomalies in active turbulence. Phys. Rev. Fluids 2022, 7, 033101. [Google Scholar] [CrossRef]
- Mukherjee, S.; Singh, R.K.; James, M.; Ray, S.S. Intermittency, fluctuations and maximal chaos in an emergent universal state of active turbulence. Nat. Phys. 2023, 19, 891–897. [Google Scholar] [CrossRef]
- Berera, A.; Ho, R.D.; Clark, D. Homogeneous isotropic turbulence in four spatial dimensions. Phys. Fluids 2020, 32, 085107. [Google Scholar] [CrossRef]
- Wilson, K.G.; Fisher, M.E. Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 1972, 28, 240. [Google Scholar] [CrossRef]
- Siggia, E.D. Origin of intermittency in fully developed turbulence. Phys. Rev. A 1977, 15, 1730. [Google Scholar] [CrossRef]
- Bell, T.L.; Nelkin, M. Time-dependent scaling relations and a cascade model of turbulence. J. Fluid Mech. 1978, 88, 369–391. [Google Scholar] [CrossRef]
- Clark, D.; Armua, A.; Freeman, C.; Brener, D.J.; Berera, A. Chaotic measure of the transition between two-and three-dimensional turbulence. Phys. Rev. Fluids 2021, 6, 054612. [Google Scholar] [CrossRef]
- Benavides, S.J.; Alexakis, A. Critical transitions in thin layer turbulence. J. Fluid Mech. 2017, 822, 364–385. [Google Scholar] [CrossRef]
- Ecke, R.E. From 2D to 3D in fluid turbulence: Unexpected critical transitions. J. Fluid Mech. 2017, 828, 1–4. [Google Scholar] [CrossRef]
- van Kan, A.; Alexakis, A. Condensates in thin-layer turbulence. J. Fluid Mech. 2019, 864, 490–518. [Google Scholar] [CrossRef]
- Musacchio, S.; Boffetta, G. Split energy cascade in turbulent thin fluid layers. Phys. Fluids 2017, 29. [Google Scholar] [CrossRef]
- Butera, P.; Caravati, G. Phase transitions and Lyapunov characteristic exponents. Phys. Rev. A 1987, 36, 962. [Google Scholar] [CrossRef] [PubMed]
- Caiani, L.; Casetti, L.; Clementi, C.; Pettini, M. Geometry of dynamics, Lyapunov exponents, and phase transitions. Phys. Rev. Lett. 1997, 79, 4361. [Google Scholar] [CrossRef]
- Barré, J.; Dauxois, T. Lyapunov exponents as a dynamical indicator of a phase transition. Europhys. Lett. 2001, 55, 164. [Google Scholar] [CrossRef]
- Clark, D.; Ho, R.D.; Berera, A. Effect of spatial dimension on a model of fluid turbulence. J. Fluid Mech. 2021, 912, A40. [Google Scholar] [CrossRef]
- Orszag, S.A. Analytical theories of turbulence. J. Fluid Mech. 1970, 41, 363–386. [Google Scholar] [CrossRef]
- Goto, S.; Vassilicos, J. The dissipation rate coefficient of turbulence is not universal and depends on the internal stagnation point structure. Phys. Fluids 2009, 21, 035104. [Google Scholar] [CrossRef]
- Grappin, R.; Leorat, J.; Pouquet, A. Computation of the dimension of a model of fully developed turbulence. J. Phys. 1986, 47, 1127–1136. [Google Scholar] [CrossRef]
- Elsasser, W.M. The hydromagnetic equations. Phys. Rev. 1950, 79, 183. [Google Scholar] [CrossRef]
- Cramer, K.R.; Pai, S.I. Magnetofluid Dynamics for Engineers and Applied Physicists; International Atomic Energy Agency: Vienna, Austria, 1973. [Google Scholar]
- McMullen, R.M.; Krygier, M.C.; Torczynski, J.R.; Gallis, M.A. Navier-Stokes equations do not describe the smallest scales of turbulence in gases. Phys. Rev. Lett. 2022, 128, 114501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, R.D.J.G.; Clark, D.; Berera, A. Chaotic Measures as an Alternative to Spectral Measures for Analysing Turbulent Flow. Atmosphere 2024, 15, 1053. https://doi.org/10.3390/atmos15091053
Ho RDJG, Clark D, Berera A. Chaotic Measures as an Alternative to Spectral Measures for Analysing Turbulent Flow. Atmosphere. 2024; 15(9):1053. https://doi.org/10.3390/atmos15091053
Chicago/Turabian StyleHo, Richard D. J. G., Daniel Clark, and Arjun Berera. 2024. "Chaotic Measures as an Alternative to Spectral Measures for Analysing Turbulent Flow" Atmosphere 15, no. 9: 1053. https://doi.org/10.3390/atmos15091053
APA StyleHo, R. D. J. G., Clark, D., & Berera, A. (2024). Chaotic Measures as an Alternative to Spectral Measures for Analysing Turbulent Flow. Atmosphere, 15(9), 1053. https://doi.org/10.3390/atmos15091053