Soil Genesis of Alluvial Parent Material in the Qinghai Lake Basin (NE Qinghai–Tibet Plateau) Revealed Using Optically Stimulated Luminescence Dating
Abstract
:1. Introduction
2. Study Area
3. Samples and Analytical Methods
Sample Profiles
4. Results
4.1. Luminescence Characteristics
4.2. OSL Dating of Alluvial Parent Material in the Qinghai Lake Basin
4.3. Soil Grain Size and Organic Matter Content Analyses
5. Discussion
6. Conclusions
- The alluvial parent material in the Qinghai Lake Basin was buried several times during the middle Holocene, which was affected by the warm and wet climatic condition during that period. Soil pedogenesis and humus accumulation during 8.5–4 ka were relatively strong in response to the high lake levels.
- The underlying alluvial parent material is characteristic of typical fluvial sediment and mainly composed of gravel and river sand components, while the upper soil is characteristic of wind dust. Therefore, alluvial soils followed the “alluvial parent material with aeolian dust accumulation mode” in the Qinghai Lake Basin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Feng, J.L.; Hu, H.P.; Chen, F. An eolian deposit–buried soil sequence in an alpine soil on the northern Tibetan Plateau: Implications for climate change and carbon sequestration. Geoderma 2016, 266, 14–24. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, G.L.; Yang, F.; Yang, R.M. Pedogenetic interpretations of particle-size distribution curves for an alpine environment. Geoderma 2016, 282, 9–15. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, G.L.; Sauer, D.; Yang, F.; Yang, R.M.; Liu, F.; Yang, J.L. The geomorphology–sediment distribution–soil formation nexus on the northeastern Qinghai-Tibetan Plateau: Implications for landscape evolution. Geomorphology 2020, 354, 107040. [Google Scholar] [CrossRef]
- Zhang, J.; Chongyi, E.; Wu, C.; Sun, Y.; Li, P.; Shi, Y.; Sun, M. An alpine meadow soil chronology based on OSL and radiocarbon dating, Qinghai Lake, northeastern Tibetan Plateau. Quat. Int. 2020, 562, 35–45. [Google Scholar] [CrossRef]
- E, C.Y.; Zhang, J.; Wu, C.Y.; Sun, Y.J.; Sun, M.P.; Yan, W.T.; Lv, S.C. Study of Chronology of the Meadow Soil in the Qinghai Lake Basin by Means of Optically Stimulated Luminescence. Acta Pedol. Sin. 2018, 55, 1325–1335, (In Chinese with English Abstract). [Google Scholar]
- Lin, Y.C.; Feng, J.L.; Zhang, J.F.; Ju, J.T.; Hu, Z.G.; Gao, S.P. Origin of Parent Materials and Pedogensis for Alpine Meadow Soils in Amdo, Northern Tibetan Plateau. J. Mt. Sci. 2012, 30, 709–720, (In Chinese with English Abstract). [Google Scholar]
- Xian, B.; E, C.Y.; Sun, M.P.; Zhang, J.; Zhang, S.; Xie, L. Formation age and causes of alpine meadow soil in Three River Headwater Region based on Optically Stimulated Luminescence dating. Bull. Soil Water Conserv. 2022, 42, 158–165, (In Chinese with English Abstract). [Google Scholar]
- Grant, J.P.; Barker, J.C. The Harvard Research: Genesis to Exodus and Beyond. Xinjiang Farm Res. Sci. Technol. 2007, 3, 49. [Google Scholar]
- Prins, M.A.; Vriend, M.; Nugteren, G.; Vinther, J.; Lu, H.; Zheng, H.; Weltje, G.J. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: Inferences from unmixing of loess grain-size records. Quat. Sci. Rev. 2007, 26, 230–242. [Google Scholar] [CrossRef]
- Peng, Q.; E, C.; Li, X.; Sun, Y.; Zhang, J.; Zhang, S.; Shi, Y.; Ji, X.; Zhang, Z. Holocene Paleoclimate Changes around Qinghai Lake in the Northeastern Qinghai-Tibet Plateau: Insights from Isotope Geochemistry of Aeolian Sediment. Atmosphere 2024, 15, 833. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Xu, L. Evaluation of lacustrine organic δ13C as a lake-level indicator: A case study of Lake Qinghai and the satellite lakes on the Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 532, 109274. [Google Scholar] [CrossRef]
- Eriksson, M.G.; Christiansson, C. Accelerated soil erosion in central Tanzania during the last few hundred years. Phys. Chem. Earth 1997, 22, 315–320. [Google Scholar] [CrossRef]
- Olley, J.M.; Caitcheon, G.G.; Roberts, R.G. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiat. Meas. 1999, 30, 207–217. [Google Scholar] [CrossRef]
- Madsen, D.B.; Haizhou, M.; Rhode, D.; Brantingham, P.J.; Forman, S.L. Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau. Quat. Res. 2008, 69, 316–325. [Google Scholar] [CrossRef]
- Rhode, D.; Haizhou, M.; Madsen, D.B.; Brantingham, P.J.; Forman, S.L.; Olsen, J.W. Paleoenvironmental and archaeological investigations at Qinghai Lake, western China: Geomorphic and chronometric evidence of lake level history. Quat. Int. 2010, 218, 29–44. [Google Scholar] [CrossRef]
- Long, H.; Tsukamoto, S.; Buylaert, J.P.; Murray, A.S.; Jain, M.; Frechen, M. Late Quaternary OSL chronologies from the Qinghai Lake (NE Tibetan Plateau): Inter-comparison of quartz and K-feldspar ages to assess the pre-depositional bleaching. Quat. Geochronol. 2019, 49, 159–164. [Google Scholar] [CrossRef]
- Chen, F.; Wu, D.; Chen, J.; Zhou, A.; Yu, J.; Shen, J.; Wang, S.; Huang, X. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies. Quat. Sci. Rev. 2016, 154, 111–129. [Google Scholar] [CrossRef]
- Liu, J.; Cai, Y.J.; Wang, J. Soil classification of Qinghai Lake basin based on remote sensing, Remote Sensing for Land and Resources. Remote Sens. Land Resources, 2014; 26, 57–62. [Google Scholar]
- Bian, Q.T.; Liu, J.Q.; Luo, X.Q.; Xiao, J. Geotectonic Setting, Fomation and Evolution of the Qinghai Lake. Seismol. Geol. 2000, 22, 20–26. [Google Scholar]
- Ma, R.J. Record of physical geography investigation around Qinghai Lake. J. Northwest Norm. Univ. (Nat. Sci.) 1982, 41–57. [Google Scholar]
- Li, X.Y.; Xu, H.Y.; Sun, Y.L.; Zhang, D.S.; Yang, Z.P. Lake-Level Change and Water Balance Analysis at Lake Qinghai, West China during Recent Decades. Water Resour. Manag. 2007, 21, 1505–1516. [Google Scholar] [CrossRef]
- Shu, W.X.; Li, S.J.; Liu, J.F. Simulation of water change in Qinghai Lake and affection factors. Arid. Land Geogr. 2008, 31, 229–236. [Google Scholar]
- Yi, W.J.; Li, X.Y.; Cui, B.L.; Ma, Y.J. Climate Change and Impact on Water Level of the Qinghai Lake Watershed. J. Arid. Meteorol. 2010, 28, 375–383. [Google Scholar]
- E, C.Y.; Sohbati, R.; Murray, A.S.; Buylaert, J.P.; Liu, X.; Yang, L.; Yuan, J.; Yan, W. Hebei loess section in the Anyemaqen Mountains, northeast Tibetan Plateau: A high-resolution luminescence. Boreas 2018, 47, 1170–1183. [Google Scholar] [CrossRef]
- Duller, G.A.T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 2003, 37, 161–165. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Bøtter-Jensen, L.; Thomsen, K.J.; Jain, M. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiat. Meas. 2010, 45, 253–257. [Google Scholar] [CrossRef]
- Guérin, G.; Mercier, N.; Nathan, R.; Adamiec, G.; Lefrais, Y. On the use of the infinite matrix assumption and associated concepts: A critical review. Radiat. Meas. 2012, 47, 778–785. [Google Scholar]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat. Meas. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Vandenberghe, C.; Tremblay, M. The role of pay satisfaction and organizational commitment in turnover intentions: A two-sample study. J. Bus. Psychol. 2008, 22, 275–286. [Google Scholar] [CrossRef]
- Liu, X.J.; Lai, Z.; Madsen, D.; Zeng, F. Last deglacial and Holocene lake level variations of Qinghai Lake, north-eastern Qinghai–Tibetan Plateau. J. Quat. Sci. 2015, 30, 245–257. [Google Scholar] [CrossRef]
- E, C.Y.; Zhang, J.; Cheng, Z.Y.; Sun, Y.J.; Zhao, Y.J.; Li, P.; Sun, M.P.; Shi, Y.K. High resolution OSL dating of aeolian activity at Qinghai Lake, Northeast Tibetan Plateau. Catena 2019, 183, 104180. [Google Scholar]
- Li, X.; Liu, X.; He, Y.; Liu, W.; Zhou, X.; Wang, Z. Summer moisture changes in the Lake Qinghai area on the northeastern Tibetan Plateau recorded from a meadow section over the past 8400 yrs. Glob. Planet. Chang. 2018, 161, 1–9. [Google Scholar] [CrossRef]
- Yu, J.Q. Lake Qinghai, China: A Multi-Proxy Investigation on Sediment Cores for the Reconstructions of Paleoclimate and Paleoenvironment Since the Marine Isotope Stage 3. Ph.D. Thesis, Faculty of Materials and Geoscience, Technical University of Darmstadt, Darmstadt, Germany, 2005. [Google Scholar]
- Hou, G.L.; Wei, H.C.; E, C.Y.; Sun, Y. Human activities and environmental change in Holocene in the northeastern margin of Qinghai-Tibet Plateau: A case study of JXG2 relic site in Qinghai Lake. Acta Geogr. Sin. 2013, 68, 9. [Google Scholar] [CrossRef]
- Kaufman, D.; McKay, N.; Routson, C.; Erb, M.; Dätwyler, C.; Sommer, P.S.; Heiri, O.; Davis, B. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 2020, 7, 201. [Google Scholar] [CrossRef]
- Rhode, D. Wood Charcoal from Archaeological Sites in the Qinghai Lake Basin, Western China: Implications for Human Resource Use and Anthropogenic Environmental Change. J. Ethnobiol. 2016, 36, 571–594. [Google Scholar] [CrossRef]
- Xu, C.X.; E, C.Y.; Shi, Y.K.; Zhang, J.; Sun, M.P.; Zhang, Z.K.; Zeng, Y.X. Holocene Aeolian Activity Recorded by Mountain Paleosols, Gonghe Basin, Northeast Qinghai-Tibet Plateau. Front. Earth Sci. 2022, 10, 832993. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, N.; Li, F.; Zhang, D.; Zhang, Y.; Shen, C.; Lu, H. The Holocene temperature conundrum answered by mollusk records from East Asia. Nat. Commun. 2022, 13, 5153. [Google Scholar] [CrossRef] [PubMed]
- Stott, L.; Cannariato, K.; Thunell, R.; Haug, G.H.; Koutavas, A.; Lund, S. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 2004, 431, 56–59. [Google Scholar] [CrossRef]
- Vinther, B.M.; Buchardt, S.L.; Clausen, H.B.; Dahl-Jensen, D.; Johnsen, S.J.; Fisher, D.A.; Koerner, R.M.; Raynaud, D.; Lipenkov, V.; Andersen, K.K.; et al. Holocene thinning of the Greenland ice sheet. Nature 2009, 461, 385–388. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, H.; Geng, J.; Cheng, J. Model-data divergence in global seasonal temperature response to astronomical insolation during the Holocene. Sci. Bull. 2022, 67, 25–28. [Google Scholar] [CrossRef]
- Chen, F.; Xu, Q.; Chen, J.; Birks, H.J.B.; Liu, J.; Zhang, S.; Jin, L.; An, C.; Telford, R.J.; Cao, X.; et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. 2015, 5, 11186. [Google Scholar] [CrossRef]
- Chen, F.; Duan, Y.W.; Hao, S.; Chen, J.; Feng, X.; Hou, J.; Cao, X.; Zhang, X.; Zhou, T. Holocene temperature major warm period model and continuous warming model: Record-model comparison problem and research prospects. Sci. China Earth Sci. 2023, 53, 1699–1717. (In Chinese) [Google Scholar]
- Wang, H.; Chen, J.; Zhang, X.; Chen, F. Palaeosol development in the Chinese Loess Plateau as an indicator of the strength of the East Asian summer monsoon: Evidence for a mid-Holocene maximum. Quat. Int. 2014, 334, 155–164. [Google Scholar] [CrossRef]
- E, C.Y.; Xi, Y.S.; Sun, Y.J.; Zhao, Y.J.; Yang, L.; Lv, S.C. Dust Flux and Grain Size Variation Analysis in Northeast Qinghai-Tibet Plateau. J. Salt Lake Res. 2016, 24, 62–74, (In Chinese with English Abstract). [Google Scholar]
Name | Latitude | Longitude | Altitude /m | Soil Type | Landform Type |
---|---|---|---|---|---|
Maohong | 37.1934° | 99.2251° | 3346 | Prototype soil | Alluvial–proluvial terraces (second-level terraces of the Buha River) |
Tianjun | 37.2559° | 99.0807° | 3384 | Prototype soil | Alluvial–proluvial terraces (second-level terraces of the Buha River) |
Tianjunxisha | 37.2119° | 99.1720° | 3348 | Entisol | First-level terraces of the Buha River |
Sample No. | Depth /m | Th (ppm) | U (ppm) | K (%) | Dose Rate /(Gy/ka) | Particle Size /μm | Number /discs | De /Gy | Age /ka |
---|---|---|---|---|---|---|---|---|---|
MH1 | 0.15 | 13.7 ± 0.7 | 2.5 ± 0.4 | 1.7 ± 0.04 | 3.4 ± 0.15 | 63–90 | 17 | 5.4 ± 0.2 | 1.6 ± 0.1 |
MH2 | 0.3 | 12.4 ± 0.7 | 2.4 ± 0.4 | 1.6 ± 0.04 | 3.13 ± 0.14 | 63–90 | 16 | 34.7 ± 3.0 | 11.1 ± 1.1 |
MH3 | 0.45 | 11.9 ± 0.7 | 2.3 ± 0.4 | 1.6 ± 0.04 | 3.07 ± 0.14 | 63–90 | 14 | 36.5 ± 2.1 | 11.9 ± 0.9 |
TJ1 | 0.15 | 10.5 ± 0.7 | 2.4 ± 0.4 | 1.4 ± 0.03 | 2.87 ± 0.13 | 63–90 | 17 | 17.4 ± 0.4 | 6.1 ± 0.3 |
TJ2 | 0.3 | 11.4 ± 0.7 | 2.9 ± 0.4 | 1.5 ± 0.04 | 3.08 ± 0.14 | 63–90 | 18 | 30.3 ± 0.8 | 9.8 ± 0.6 |
TJ3 | 0.4 | 12.7 ± 0.7 | 3.5 ± 0.4 | 1.8 ± 0.04 | 3.53 ± 0.16 | 63–90 | 16 | 35.2 ± 1.2 | 10.0 ± 0.6 |
TJ4 | 0.6 | 17.6 ± 0.7 | 3.2 ± 0.4 | 2.2 ± 0.04 | 4.07 ± 0.18 | 63–90 | 17 | 42.7 ± 1.3 | 10.5 ± 0.6 |
TJXS1 | 0.2 | 10.0 ± 0.7 | 2.6 ± 0.4 | 1.7 ± 0.03 | 3.1 ± 0.14 | 63–90 | 17 | 12.1 ± 0.3 | 3.9 ± 0.2 |
TJXS2 | 0.85 | 8.7 ± 0.6 | 2.0 ± 0.3 | 1.6 ± 0.03 | 2.71 ± 0.12 | 63–90 | 17 | 16.8 ± 0.5 | 6.2 ± 0.3 |
TJXS3 | 1.15 | 12.7 ± 0.7 | 2.0 ± 0.3 | 1.9 ± 0.04 | 3.24 ± 0.14 | 63–90 | 11 | 27.5 ± 1.2 | 8.5 ± 0.5 |
TJXS4 | 1.36 | 15.3 ± 0.8 | 2.2 ± 0.4 | 2.2 ± 0.04 | 3.46 ± 0.16 | 63–90 | 16 | 31.4 ± 1.7 | 9.1 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; E, C.; Ji, X.; Li, P.; Peng, Q.; Zhang, Z.; Zhang, Q. Soil Genesis of Alluvial Parent Material in the Qinghai Lake Basin (NE Qinghai–Tibet Plateau) Revealed Using Optically Stimulated Luminescence Dating. Atmosphere 2024, 15, 1066. https://doi.org/10.3390/atmos15091066
Zhang S, E C, Ji X, Li P, Peng Q, Zhang Z, Zhang Q. Soil Genesis of Alluvial Parent Material in the Qinghai Lake Basin (NE Qinghai–Tibet Plateau) Revealed Using Optically Stimulated Luminescence Dating. Atmosphere. 2024; 15(9):1066. https://doi.org/10.3390/atmos15091066
Chicago/Turabian StyleZhang, Shuaiqi, Chongyi E, Xianba Ji, Ping Li, Qiang Peng, Zhaokang Zhang, and Qi Zhang. 2024. "Soil Genesis of Alluvial Parent Material in the Qinghai Lake Basin (NE Qinghai–Tibet Plateau) Revealed Using Optically Stimulated Luminescence Dating" Atmosphere 15, no. 9: 1066. https://doi.org/10.3390/atmos15091066
APA StyleZhang, S., E, C., Ji, X., Li, P., Peng, Q., Zhang, Z., & Zhang, Q. (2024). Soil Genesis of Alluvial Parent Material in the Qinghai Lake Basin (NE Qinghai–Tibet Plateau) Revealed Using Optically Stimulated Luminescence Dating. Atmosphere, 15(9), 1066. https://doi.org/10.3390/atmos15091066