Assessing the COVID-19 Lockdown Impact on Global Air Quality: A Transportation Perspective
Abstract
:1. Introduction
2. Data
2.1. Lockdowns and Mobility Data
2.2. Air Quality Measures and Weather Data
2.3. Summary Statistics
3. Empirical Model
3.1. Ordinary Least Squares Strategy
3.2. Difference-in-Differences Method
4. Empirical Results
4.1. Fixed-Effects OLS Estimates
4.2. Difference-in-Differences Estimates
4.3. Robustness Checks
5. Mechanism: Mobility Restriction
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). WHO Coronavirus Disease (COVID-19) Dashboard. 2021. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 28 January 2021).
- Correia, S.; Luck, S.; Verner, E. Pandemics depress the economy, public health interventions do not: Evidence from the 1918 flu. arXiv 2020, arXiv:2207.11636. [Google Scholar] [CrossRef]
- Borjas, G.J.; Cassidy, H. The Adverse Effect of the COVID-19 Labor Market Shock on Immigrant Employment; NBER Working Paper No. 27243; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Fairlie, R.W.; Couch, K.A.; Xu, H. The Impacts of COVID-19 on Minority Unemployment: First Evidence from April 2020 CPS Microdata; NBER Working Paper No. 27246; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Chen, H.; Qian, W.; Wen, Q. The impact of the COVID-19 pandemic on consumption: Learning from high frequency transaction data. AEA Pap. Proc. 2020, 111, 307–311. [Google Scholar] [CrossRef]
- Coibion, O.; Gorodnichenko, Y.; Weber, M. The Cost of the COVID-19 Crisis: Lockdowns, Macroeconomic Expectations, and Consumer Spending; NBER Working Papers No. 27141; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Fairlie, R.W. The Impact of COVID-19 on Small Business Owners: Evidence of Early-Stage Losses from the April 2020 Current Population Survey; NBER Working Papers No. 27309; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Deaton, A. COVID-19 and Global Income Inequality; NBER Working Papers No. 28392; National Bureau of Economic Research: Cambridge, MA, USA, 2021. [Google Scholar]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Brodeur, A.; Cook, N.; Wright, T. On the Effects of COVID-19 Safer-at-Home Policies on Social Distancing, Car Crashes and Pollution; IZA Discussion Paper No. 13255; IZA Institute of Labor Economics: Bonn, Germany, 2020. [Google Scholar]
- Liu, F.; Wang, M.; Zheng, M. Effects of COVID-19 lockdown on global air quality and health. Sci. Total Environ. 2021, 755, 142533. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Cole, M.A.; Ozgen, C.; Strobl, E. Air Pollution Exposure and COVID-19; IEA: Bonn, Germany, 2020. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Borhani, F.; Motlagh, M.S.; Stohl, A.; Rashidi, Y.; Ehsani, A.H. Changes in short-lived climate pollutants during the COVID-19 pandemic in Tehran, Iran. Environ. Monit. Assess. 2021, 193, 331. [Google Scholar] [CrossRef]
- Turek, T.; Diakowska, E.; Kamińska, J.A. Has COVID-19 lockdown affected on air quality?—Different time scale case study in Wrocław, Poland. Atmosphere 2021, 12, 1549. [Google Scholar] [CrossRef]
- Gulyaev, E.; Antonov, K.; Markelov, Y.; Poddubny, V.; Shchelkanov, A.; Iurkov, I. Short-term effect of COVID-19 lockdowns on atmospheric CO2, CH4 and PM2.5 concentrations in urban environment. Int. J. Environ. Sci. Technol. 2023, 20, 4737–4748. [Google Scholar] [CrossRef]
- Vignesh, V.G.; Jain, C.D.; Saikranthi, K.; Venkat Ratnam, M. Spatial variability of trace gases (NO2, O3 and CO) over Indian region during 2020 and 2021 COVID-19 lockdowns. Environ. Monit. Assess. 2023, 195, 680. [Google Scholar] [CrossRef]
- Tobías, A. Evaluation of the lockdowns for the SARS-CoV-2 epidemic in Italy and Spain after one month follow up. Sci. Total Environ. 2020, 725, 138539. [Google Scholar] [CrossRef] [PubMed]
- Hale, T.; Webster, S.; Petherick, A.; Phillips, T.; Kira, B. Oxford COVID-19 Government Response Tracker; Blavatnik School of Government: Oxford, UK, 2020. [Google Scholar]
- He, G.; Pan, Y.; Tanaka, T. The causal effect of air pollution on COVID-19 transmission: Evidence from China. medRxiv 2020. [Google Scholar] [CrossRef]
- Coccia, M. How sustainable environments have reduced the diffusion of coronavirus disease 2019: The interaction between spread of COVID-19 infection, polluting industrialization, wind (renewable) energy. arXiv 2020, arXiv:2005.08293. [Google Scholar]
- Goodman-Bacon, A.; Marcus, J. Using Difference-in-Differences to Identify Causal Effects of COVID-19 Policies; Discussion Papers of DIW Berlin 1870; DIW Berlin, German Institute for Economic Research: Berlin, Germany, 2020. [Google Scholar]
- Lechner, M. The estimation of causal effects by difference-in-difference methods. Found. Trends Econom. 2011, 4, 165–224. [Google Scholar] [CrossRef]
- Callaway, B.; Sant’Anna, P.H.C. Difference-in-differences with multiple time periods. J. Econom. 2021, 225, 200–230. [Google Scholar] [CrossRef]
- Dang, H.A.H.; Trinh, T.A. Does the COVID-19 lockdown improve global air quality? New cross-national evidence on its unintended consequences. J. Environ. Econ. Manag. 2021, 105, 102401. [Google Scholar] [CrossRef]
- Cheng, Y.; He, K.; Du, Z.; Zheng, M.; Duan, F.; Ma, Y. Humidity plays an important role in the PM2.5 pollution in Beijing. Environ. Pollut. 2015, 197, 68–75. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2020, 8, nwaa137. [Google Scholar] [CrossRef]
- Kroll, J.H.; Heald, C.L.; Cappa, C.D.; Farmer, D.K.; Steiner, A.L. The complex chemical effects of COVID-19 shutdowns on air quality. Nat. Chem. 2020, 12, 777–779. [Google Scholar] [CrossRef]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.-F.; van Gent, J.; Eskes, H.; Levelt, P.F.; van der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophys. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef]
- Liu, F.; Page, A.; Strode, S.A.; Yoshida, Y.; Choi, S.; Zheng, B.; Lamsal, L.N.; Li, C.; Krotkov, N.A.; Eskes, H.; et al. Abrupt declines in tropospheric nitrogen dioxide over China after the outbreak of COVID-19. Sci. Adv. 2020, 6, eabc2992. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hao, X.; Zhang, X.; Chen, F. Have traffic restrictions improved air quality? A shock from COVID-19. J. Clean. Prod. 2021, 279, 123622. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Meyerhoefer, C.; Yang, F.A. COVID-19 Prevention and Air Pollution in the Absence of a Lockdown; NBER Working Paper No. 27604; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Salas, R.; Perez-Villadoniga, M.J.; Prieto-Rodriguez, J.; Russo, A. Were traffic restrictions in Madrid effective at reducing NO2 levels? Transport. Res. D Transp. Environ. 2021, 91, 102689. [Google Scholar] [CrossRef]
- Yang, X.; Mccoy, E.; Hough, K.; de Nazelle, A. Evaluation of low traffic neighbourhood (LTN) impacts on NO2 and traffic. Transport. Res. D Transp. Environ. 2022, 113, 103536. [Google Scholar]
- Rivera, N.M. Air quality warnings and temporary driving bans: Evidence from air pollution, car trips, and mass-transit ridership in Santiago. J. Environ. Econ. Manag. 2021, 108, 102454. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; Hu, Q.; Su, W.; Yang, X.; Lin, J.; Zhang, C.; Xing, C.; Ji, X.; Tan, W.; et al. Distinct Regimes of O3 Response to COVID-19 Lockdown in China. Atmosphere 2021, 12, 184. [Google Scholar] [CrossRef]
- Rivers, N.; Saberian, S.; Schaufele, B. Public transit and air pollution: Evidence from Canadian transit strikes. Can. J. Econ. Rev. Can. D’économique 2020, 53, 496–525. [Google Scholar] [CrossRef]
- Sahraei, M.A.; Kukapan, E.; Odur, M.Y. Public transit usage and air quality index during the COVID-19 lockdown. J. Environ. Manag. 2021, 286, 112166. [Google Scholar] [CrossRef]
Number | Name | Description |
---|---|---|
C1 | School closings | 0—no measures; 1—recommend closing; 2—require closing; 3—require closing all levels. |
C2 | Workplace closings | 0—no measures; 1—recommend closing; 2—require closing for some sectors or categories of workers; 3—require closing for all-but-essential workplaces. |
C3 | Cancel public events | 0—no measures; 1—recommend cancelling; 2—require cancelling. |
C4 | Restrictions on gatherings | 0—no restrictions; 1—restrictions on very large gatherings (the limit is above 1000 people); 2—restrictions on gatherings between 101 and 1000 people; 3—restrictions on gatherings between 11 and 100 people; 4—restrictions on gatherings of 10 people or less. |
C5 | Close public transport | 0—no measures; 1—recommend closing (or significantly reduce; volume/route/means of transport available); 2—require closing (or prohibit most citizens from using it). |
C6 | Stay at home requirements | 0—no measures; 1—recommend not leaving house; 2—require not leaving house with exceptions for daily exercise, grocery shopping, and “essential” trips; 3—require not leaving house with minimal exceptions. |
C7 | Restrictions on internal movement | 0—no measures; 1—recommend not to travel between regions/cities; 2—internal movement restrictions in place. |
C8 | International travel controls | 0—no restrictions; 1—screening arrivals; 2—quarantine arrivals from some or all regions; 3—ban arrivals from some regions; 4—ban on all regions or total border closure. |
Variable | N | Mean | S. D. | Min | Max |
---|---|---|---|---|---|
PM2.5 | 179,165 | 52.90 | 40.53 | 1 | 834 |
PM10 | 176,040 | 26.17 | 24.58 | 1 | 884 |
SO2 | 146,468 | 3.90 | 7.38 | 0 | 500 |
NO2 | 175,522 | 9.18 | 7.18 | 0 | 183.8 |
O3 | 163,557 | 19.76 | 10.87 | 0 | 274 |
CO | 135,333 | 5.20 | 9.750 | 0.10 | 500 |
Humidity | 202,790 | 69.06 | 22.40 | 0 | 122 |
Temperature | 202,843 | 16.23 | 11.70 | −50 | 247.6 |
Wind speed | 200,335 | 3.100 | 13.71 | 0.10 | 289.8 |
Transit | 163,563 | −31.38 | 21.43 | −95 | 48 |
Driving | 169,571 | 100.71 | 40.35 | 8.74 | 670.5 |
Stringency index | 213,232 | 53.37 | 26.29 | 0 | 100.00 |
Government response index | 213,082 | 50.59 | 22.61 | 0 | 89.17 |
Containment and health index | 213,220 | 50.84 | 22.78 | 0 | 91.35 |
Economic support index | 212,178 | 49.22 | 33.43 | 0 | 100.00 |
Dep. var. = | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|---|
Measures: | PM2.5 | PM2.5 | PM2.5 | PM2.5 | PM2.5 | PM2.5 | PM2.5 | PM2.5 | |
C1 | −1.889 *** | ||||||||
(0.071) | |||||||||
C2 | −1.791 *** | ||||||||
(0.081) | |||||||||
C3 | −2.266 *** | ||||||||
(0.105) | |||||||||
C4 | −0.760 *** | ||||||||
(0.054) | |||||||||
C5 | −3.115 *** | ||||||||
(0.125) | |||||||||
C6 | −1.878 *** | ||||||||
(0.088) | |||||||||
C7 | −1.696 *** | ||||||||
(0.099) | |||||||||
C8 | −2.301 *** | ||||||||
(0.065) | |||||||||
Humidity | 0.002 | 0.012 *** | 0.011 ** | 0.017 *** | 0.013 *** | 0.013 *** | 0.011 ** | 0.006 | |
(0.005) | (0.004) | (0.004) | (0.004) | (0.004) | (0.004) | (0.005) | (0.004) | ||
Temperature | −0.677 *** | −0.676 *** | −0.681 *** | −0.690 *** | −0.691 *** | −0.708 *** | −0.690 *** | −0.640 *** | |
(0.009) | (0.009) | (0.009) | (0.009) | (0.009) | (0.009) | (0.009) | (0.009) | ||
Wind speed | 0.159 *** | 0.153 *** | 0.158 *** | 0.160 *** | 0.162 *** | 0.174 *** | 0.163 *** | 0.132 *** | |
(0.012) | (0.012) | (0.012) | (0.012) | (0.012) | (0.012) | (0.012) | (0.012) | ||
R2 | 0.499 | 0.499 | 0.498 | 0.498 | 0.499 | 0.498 | 0.498 | 0.501 | |
No. of cities | 596 | 596 | 596 | 596 | 596 | 596 | 596 | 596 | |
No. of countries | 77 | 77 | 77 | 77 | 77 | 77 | 77 | 77 | |
N | 168,913 | 168,913 | 168,883 | 168,913 | 168,913 | 168,897 | 168,910 | 168,913 | |
Date FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
City by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Country by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Lockdown Measures: | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
Panel A: PM2.5 | −1.889 *** | −1.791 *** | −2.266 *** | −0.760 *** | −3.115 *** | −1.878 *** | −1.696 *** | −2.301 *** |
(0.071) | (0.081) | (0.105) | (0.054) | (0.125) | (0.088) | (0.099) | (0.065) | |
Panel B: PM10 | −1.420 *** | −1.241 *** | −1.423 *** | −0.555 *** | −2.337 *** | −1.388 *** | −1.239 *** | −1.368 *** |
(0.045) | (0.051) | (0.065) | (0.034) | (0.079) | (0.055) | (0.061) | (0.040) | |
Panel C: SO2 | −0.242 *** | −0.283 *** | −0.397 *** | −0.084 *** | −0.219 *** | −0.187 *** | −0.273 *** | −0.057 *** |
(0.014) | (0.016) | (0.021) | (0.011) | (0.024) | (0.017) | (0.019) | (0.013) | |
Panel D: NO2 | −1.031 *** | −1.023 *** | −1.128 *** | −0.423 *** | −1.314 *** | −0.847 *** | −0.910 *** | −0.549 *** |
(0.012) | (0.014) | (0.018) | (0.009) | (0.022) | (0.015) | (0.017) | (0.011) | |
Panel E: CO | −0.191 *** | −0.214 *** | −0.189 *** | −0.038 *** | −0.163 *** | −0.178 *** | −0.178 *** | −0.063 *** |
(0.015) | (0.018) | (0.024) | (0.012) | (0.027) | (0.019) | (0.022) | (0.014) | |
Panel F: O3 | 1.189 *** | 0.499 *** | 0.564 *** | −0.132 *** | 0.410 *** | 0.220 *** | 0.063 ** | 0.193 *** |
(0.020) | (0.024) | (0.030) | (0.016) | (0.037) | (0.025) | (0.028) | (0.019) | |
Weather controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Date FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Lockdown Measures: | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
Panel A: PM2.5 | −8.777 *** | −7.971 *** | −8.343 *** | −7.698 *** | −7.315 *** | −5.403 *** | −6.583 *** | −8.073 *** |
(0.251) | (0.245) | (0.253) | (0.240) | (0.230) | (0.232) | (0.239) | (0.278) | |
−5.855 *** | −5.287 *** | −5.406 *** | −5.245 *** | −5.053 *** | −3.726 *** | −4.523 *** | −4.609 *** | |
Panel B: PM10 | (0.152) | (0.148) | (0.153) | (0.147) | (0.137) | (0.138) | (0.142) | (0.164) |
−0.800 *** | −0.795 *** | −0.933 *** | −0.570 *** | −0.635 *** | −0.664 *** | −0.738 *** | −0.203 *** | |
(0.061) | (0.059) | (0.062) | (0.044) | (0.055) | (0.055) | (0.057) | (0.069) | |
Panel C: SO2 | −4.072 *** | −3.943 *** | −4.024 *** | −3.284 *** | −3.551 *** | −3.107 *** | −3.454 *** | −2.420 *** |
(0.047) | (0.045) | (0.047) | (0.045) | (0.041) | (0.042) | (0.044) | (0.053) | |
−0.693 *** | −0.693 *** | −0.641 *** | −0.490 *** | −0.407 *** | −0.418 *** | −0.552 *** | −0.520 *** | |
Panel D: NO2 | (0.066) | (0.063) | (0.067) | (0.067) | (0.058) | (0.060) | (0.062) | (0.077) |
4.565 *** | 4.288 *** | 5.009 *** | 3.760 *** | 3.183 *** | 3.881 *** | 3.756 *** | 2.647 *** | |
(0.067) | (0.067) | (0.067) | (0.072) | (0.068) | (0.063) | (0.065) | (0.079) | |
Panel E: CO | −8.777 *** | −7.971 *** | −8.343 *** | −7.698 *** | −7.315 *** | −5.403 *** | −6.583 *** | −8.073 *** |
(0.251) | (0.245) | (0.253) | (0.240) | (0.230) | (0.232) | (0.239) | (0.278) | |
−5.855 *** | −5.287 *** | −5.406 *** | −5.245 *** | −5.053 *** | −3.726 *** | −4.523 *** | −4.609 *** | |
Panel F: O3 | (0.152) | (0.148) | (0.153) | (0.147) | (0.137) | (0.138) | (0.142) | (0.164) |
−0.800 *** | −0.795 *** | −0.933 *** | −0.570 *** | −0.635 *** | −0.664 *** | −0.738 *** | −0.203 *** | |
(0.061) | (0.059) | (0.062) | (0.044) | (0.055) | (0.055) | (0.057) | (0.069) | |
Weather controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Date FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country by Date Trend | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Independent Variable: | PM2.5 | log (PM2.5) | The Dynamic Panel Data Model | Excluding Observations 5 Days Near the Lockdown Date | Excluding Observations 10 Days Near the Lockdown Date | Cities with More than One Monitoring Station Only | Full Sample | Country-Level Data |
Stringency index | −0.093 *** | |||||||
(0.003) | ||||||||
C1 | −0.109 *** | −3.156 *** | −5.610 *** | −5.706 *** | −5.422 *** | −5.598 *** | −9.390 *** | |
(0.004) | (0.198) | (0.220) | (0.229) | (0.213) | (0.214) | (0.572) | ||
C2 | −0.101 *** | −2.836 *** | −4.812 *** | −4.817 *** | −4.613 *** | −4.605 *** | −7.697 *** | |
(0.004) | (0.192) | (0.204) | (0.211) | (0.199) | (0.199) | (0.562) | ||
C3 | −0.105 *** | −3.071 *** | −5.083 *** | −4.905 *** | −4.788 *** | −4.985 *** | −9.019 *** | |
(0.004) | (0.200) | (0.214) | (0.221) | (0.209) | (0.209) | (0.577) | ||
C4 | −0.103 *** | −2.732 *** | −3.100 *** | −3.153 *** | −2.816 *** | −3.011 *** | −7.817 *** | |
(0.004) | (0.187) | (0.210) | (0.216) | (0.204) | (0.204) | (0.554) | ||
C5 | −0.108 *** | −3.016 *** | −1.816 *** | −1.816 *** | −1.176 *** | −1.749 *** | −8.319 *** | |
(0.004) | (0.179) | (0.179) | (0.179) | (0.175) | (0.175) | (0.536) | ||
C6 | −0.066 *** | −2.144 *** | −1.138 *** | −0.809 *** | −1.090 *** | −1.397 *** | −7.181 *** | |
(0.004) | (0.182) | (0.178) | (0.181) | (0.174) | (0.174) | (0.537) | ||
C7 | −0.077 *** | −2.362 *** | −1.514 *** | −1.446 *** | −0.965 *** | −1.559 *** | −6.734 *** | |
(0.004) | (0.186) | (0.180) | (0.184) | (0.177) | (0.177) | (0.539) | ||
C8 | −0.133 *** | −2.984 *** | −7.088 *** | −7.520 *** | −6.600 *** | −6.590 *** | −4.822 *** | |
(0.005) | (0.223) | (0.245) | (0.258) | (0.233) | (0.234) | (0.632) |
LDM | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | |||||||||
lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | |
LD | 0.840 *** | −5.696 *** | −0.776 *** | −7.154 *** | −0.789 *** | −4.153 *** | −0.647 *** | −4.405 *** | ||||
(0.005) | (0.407) | (0.004) | (0.360) | (0.005) | (0.405) | (0.004) | (0.320) | |||||
lnt | −1.468 *** | −3.850 *** | 1.840 ** | −5.627 *** | −1.605 *** | −3.072 *** | −2.531 *** | −4.435 *** | ||||
(0.242) | (0.296) | (0.241) | (0.307) | (0.242) | (0.281) | (0.235) | (0.272) | |||||
N | 56,754 | 46,618 | 46,618 | 60,645 | 50,137 | 50,137 | 56,121 | 46,139 | 46,139 | 64,307 | 53,694 | 53,694 |
R2 | 0.524 | 0.558 | 0.559 | 0.572 | 0.550 | 0.554 | 0.473 | 0.564 | 0.565 | 0.503 | 0.548 | 0.550 |
LDM | (13) | (14) | (15) | (16) | (17) | (18) | (19) | (20) | (21) | (22) | (23) | (24) |
C5 | C6 | C7 | C8 | |||||||||
lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | lnt | PM2.5 | PM2.5 | |
LD | −0.580 *** | −7.273 *** | −0.632 *** | −0.849 *** | −0.705 *** | −4.551 *** | −0.402 *** | −2.663 *** | ||||
(0.003) | (0.285) | (0.003) | (0.301) | (0.004) | (0.332) | (0.008) | (0.438) | |||||
lnt | −1.217 *** | −5.008 *** | 1.855 *** | −2.335 *** | −2.063 *** | −4.518 *** | −1.434 *** | −1.713 *** | ||||
(0.241) | (0.282) | (0.240) | (0.294) | (0.238) | (0.297) | (0.257) | (0.261) | |||||
N | 74,015 | 62,220 | 62,220 | 61,728 | 51,101 | 51,101 | 60,586 | 49,973 | 49,973 | 45,725 | 37,710 | 37,710 |
R2 | 0.535 | 0.535 | 0.539 | 0.548 | 0.534 | 0.534 | 0.563 | 0.558 | 0.559 | 0.348 | 0.567 | 0.568 |
LDM | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | |||||||||
lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | |
LD | −0.725 *** | −5.787 *** | −0.691 *** | −5.205 *** | −0.711 *** | −5.190 *** | −0.691 *** | −5.205 *** | ||||
(0.004) | (0.306) | (0.004) | (0.283) | (0.004) | (0.304) | (0.004) | (0.283) | |||||
lnd | 2.869 *** | −0.076 | 2.000 *** | −0.515 ** | 2.779 *** | 0.241 | 2.000 *** | −0.515 ** | ||||
(0.212) | (0.262) | (0.200) | (0.241) | (0.212) | (0.258) | (0.200) | (0.241) | |||||
N | 65,898 | 54,320 | 54,320 | 71,493 | 59,566 | 59,566 | 65,272 | 53,860 | 53,860 | 71,493 | 59,566 | 59,566 |
R2 | 0.513 | 0.519 | 0.522 | 0.523 | 0.509 | 0.512 | 0.495 | 0.522 | 0.525 | 0.523 | 0.509 | 0.512 |
LDM | (13) | (14) | (15) | (16) | (17) | (18) | (19) | (20) | (21) | (22) | (23) | (24) |
C5 | C6 | C7 | C8 | |||||||||
lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | lnd | PM2.5 | PM2.5 | |
LD | −0.624 *** | −7.138 *** | −0.647 *** | −1.158 *** | −0.702 *** | −3.291 *** | −0.469 *** | −4.726 *** | ||||
(0.004) | (0.267) | (0.003) | (0.269) | (0.003) | (0.288) | (0.005) | (0.306) | |||||
lnd | 2.834 *** | −0.184 | 2.079 *** | 1.477 *** | 2.270 *** | 0.471 * | 2.721 *** | 1.632 *** | ||||
(0.202) | (0.230) | (0.206) | (0.249) | (0.208) | (0.260) | (0.220) | (0.231) | |||||
N | 78,902 | 66,091 | 66,091 | 70,161 | 58,113 | 58,113 | 69,211 | 57,176 | 57,176 | 55,239 | 45,655 | 45,655 |
R2 | 0.506 | 0.503 | 0.508 | 0.512 | 0.501 | 0.501 | 0.539 | 0.513 | 0.514 | 0.333 | 0.543 | 0.546 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Liu, F.; Wang, M. Assessing the COVID-19 Lockdown Impact on Global Air Quality: A Transportation Perspective. Atmosphere 2025, 16, 113. https://doi.org/10.3390/atmos16010113
Zheng M, Liu F, Wang M. Assessing the COVID-19 Lockdown Impact on Global Air Quality: A Transportation Perspective. Atmosphere. 2025; 16(1):113. https://doi.org/10.3390/atmos16010113
Chicago/Turabian StyleZheng, Meina, Feng Liu, and Meichang Wang. 2025. "Assessing the COVID-19 Lockdown Impact on Global Air Quality: A Transportation Perspective" Atmosphere 16, no. 1: 113. https://doi.org/10.3390/atmos16010113
APA StyleZheng, M., Liu, F., & Wang, M. (2025). Assessing the COVID-19 Lockdown Impact on Global Air Quality: A Transportation Perspective. Atmosphere, 16(1), 113. https://doi.org/10.3390/atmos16010113