Ethyne Furan Ratios as Indicators of High and Low Temperature p-PAH Emissions from Household Stoves in Haryana India
Abstract
:1. Introduction
2. Methods
2.1. Sample Collection
2.2. HPLC Methods
2.3. Sample Detection
3. Results
4. Discussion
Use of PAH Isomer Ratios in Source Apportionment
5. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edwards, R.; Princevac, M.; Weltman, R.; Ghasemian, M.; Arora, N.K.; Bond, T. Modeling emission rates and exposures from outdoor cooking. Atmos. Environ. 2017, 164, 50–60. [Google Scholar] [CrossRef]
- Edwards, R.; Bond, T.; Smith, K.R. Characterization of emissions from small, variable solid fuel combustion sources for determining global emissions and climate impact. In Final Project Report EPA STAR 83503601; United States Environmental Protection Agency: Washington DC, USA, 2017. [Google Scholar]
- Rooney, B.; Zhao, R.; Wang, Y.; Bates, K.H.; Pillarisetti, A.; Sharma, S.; Kundu, S.; Bond, T.C.; Lam, N.L.; Ozaltun, B. Impacts of household sources on air pollution at village and regional scales in India. Atmos. Chem. Phys. 2019, 19, 7719–7742. [Google Scholar] [CrossRef]
- Smith, K.R.; McCracken, J.P.; Weber, M.W.; Hubbard, A.; Jenny, A.; Thompson, L.M.; Balmes, J.; Diaz, A.; Arana, B.; Bruce, N. Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): A randomised controlled trial. Lancet 2011, 378, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Låg, M.; Øvrevik, J.; Refsnes, M.; Holme, J.A. Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respir. Res. 2020, 21, 1–22. [Google Scholar] [CrossRef]
- Luderer, U.; Lim, J.; Ortiz, L.; Nguyen, J.D.; Shin, J.H.; Allen, B.D.; Liao, L.S.; Malott, K.; Perraud, V.; Wingen, L.M. Exposure to environmentally relevant concentrations of ambient fine particulate matter (PM2. 5) depletes the ovarian follicle reserve and causes sex-dependent cardiovascular changes in apolipoprotein E null mice. Part. Fibre Toxicol. 2022, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Khanna, R.; Bhargava, S.; Kumar, S. Exposure risk to carcinogenic PAHs in indoor-air during biomass combustion whilst cooking in rural India. Atmos. Environ. 2004, 38, 4761–4767. [Google Scholar] [CrossRef]
- Ambade, B.; Kumar, A.; Sahu, L.K. Characterization and health risk assessment of particulate bound polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor atmosphere of Central East India. Environ. Sci. Pollut. Res. 2021, 28, 56269–56280. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Pervez, S.; Chow, J.C.; Majumdar, D.; Watson, J.G.; Pervez, Y.F.; Deb, M.K.; Shrivas, K.; Jain, V.K.; Khan, N.A. Assessing the magnitude of PM2. 5 polycyclic aromatic hydrocarbon emissions from residential solid fuel combustion and associated health hazards in South Asia. Atmos. Pollut. Res. 2021, 12, 101142. [Google Scholar] [CrossRef]
- Nisbet, I.C.; Lagoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Gustafson, P.; Barregard, L.; Strandberg, B.; Sällsten, G. The impact of domestic wood burning on personal, indoor and outdoor levels of 1, 3-butadiene, benzene, formaldehyde and acetaldehyde. J. Environ. Monit. 2007, 9, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Shen, G.; Zhang, Y.; Xue, M.; Xie, H.; Lin, P.; Chen, Y.; Wang, X.; Tao, S. Field measurement on the emissions of PM, OC, EC and PAHs from indoor crop straw burning in rural China. Environ. Pollut. 2014, 184, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, K.; Chakraborty, D.; Natarajan, S.; Sambandam, S.; Balakrishnan, K. Monitoring of polycyclic aromatic hydrocarbons emitted from kerosene fuel burning and assessment of health risks among women in selected rural and urban households of South India. Environ. Geochem. Health 2023, 45, 1445–1459. [Google Scholar] [CrossRef]
- Weltman, R.M.; Edwards, R.D.; Fleming, L.T.; Yadav, A.; Weyant, C.L.; Rooney, B.; Seinfeld, J.H.; Arora, N.K.; Bond, T.C.; Nizkorodov, S.A. Emissions measurements from household solid fuel use in Haryana, India: Implications for climate and health co-benefits. Environ. Sci. Technol. 2021, 55, 3201–3209. [Google Scholar] [CrossRef]
- Thompson, R.J.; Li, J.; Weyant, C.L.; Edwards, R.; Lan, Q.; Rothman, N.; Hu, W.; Dang, J.; Dang, A.; Smith, K.R. Field emission measurements of solid fuel stoves in Yunnan, China demonstrate dominant causes of uncertainty in household emission inventories. Environ. Sci. Technol. 2019, 53, 3323–3330. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.R.; Tiwari, R.; Verma, M.K.; Kumar, H. Practical Evaluation Approach of a Typical Biomass Cookstove. In Bioenergy Engineering; CRC Press: Boca Raton, FL, USA, 2021; pp. 209–229. [Google Scholar]
- Adhikari, S.; Mahapatra, P.S.; Pokheral, C.P.; Puppala, S.P. Cookstove smoke impact on ambient air quality and probable consequences for human health in rural locations of southern Nepal. Int. J. Environ. Res. Public Health 2020, 17, 550. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Yun, X.; Chen, Y.; Zhong, Q.; Wang, W.; Wang, L.; Qi, M.; Shen, G.; Tao, S. PAHs emissions from residential biomass burning in real-world cooking stoves in rural China. Environ. Pollut. 2020, 267, 115592. [Google Scholar] [CrossRef]
- Du, W.; Wang, J.; Zhuo, S.; Zhong, Q.; Wang, W.; Chen, Y.; Wang, Z.; Mao, K.; Huang, Y.; Shen, G. Emissions of particulate PAHs from solid fuel combustion in indoor cookstoves. Sci. Total Environ. 2021, 771, 145411. [Google Scholar] [CrossRef] [PubMed]
- Sekimoto, K.; Koss, A.R.; Gilman, J.B.; Selimovic, V.; Coggon, M.M.; Zarzana, K.J.; Yuan, B.; Lerner, B.M.; Brown, S.S.; Warneke, C. High-and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels. Atmos. Chem. Phys. 2018, 18, 9263–9281. [Google Scholar] [CrossRef]
- Maxwell, D.; Gudka, B.; Jones, J.; Williams, A. Emissions from the combustion of torrefied and raw biomass fuels in a domestic heating stove. Fuel Process. Technol. 2020, 199, 106266. [Google Scholar] [CrossRef]
- Reizer, E.; Viskolcz, B.; Fiser, B. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: A mini-review. Chemosphere 2021, 291, 132793. [Google Scholar] [CrossRef]
- Tobiszewski, M. Application of diagnostic ratios of PAHs to characterize the pollution emission sources. In Proceedings of the 5th International Conference on Environmental Science and Technology, Gdansk, Poland, 14–16 May 2014; pp. 41–44. [Google Scholar]
- Verma, R.; Patel, K.S.; Verma, S.K. Indoor polycyclic aromatic hydrocarbon concentration in central India. Polycycl. Aromat. Compd. 2016, 36, 152–168. [Google Scholar] [CrossRef]
- Rajput, P.; Sarin, M.; Sharma, D.; Singh, D. Atmospheric polycyclic aromatic hydrocarbons and isomer ratios as tracers of biomass burning emissions in Northern India. Environ. Sci. Pollut. Res. 2014, 21, 5724–5729. [Google Scholar] [CrossRef] [PubMed]
- Rajput, P.; Sarin, M.; Rengarajan, R.; Singh, D. Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: Isomer ratios and temporal trends. Atmos. Environ. 2011, 45, 6732–6740. [Google Scholar] [CrossRef]
- Chen, K.-S.; Wang, H.-K.; Peng, Y.-P.; Wang, W.-C.; Chen, C.-H.; Lai, C.-H. Effects of open burning of rice straw on concentrations of atmospheric polycyclic aromatic hydrocarbons in Central Taiwan. J. Air Waste Manag. Assoc. 2008, 58, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Gadi, R.; Mandal, T. Emissions of polycyclic aromatic hydrocarbons in the atmosphere: An indian perspective. Hum. Ecol. Risk Assess. 2010, 16, 1145–1168. [Google Scholar] [CrossRef]
- Shen, H.; Huang, Y.; Wang, R.; Zhu, D.; Li, W.; Shen, G.; Wang, B.; Zhang, Y.; Chen, Y.; Lu, Y. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ. Sci. Technol. 2013, 47, 6415–6424. [Google Scholar] [CrossRef]
- Shen, G.; Wang, W.; Yang, Y.; Ding, J.; Xue, M.; Min, Y.; Zhu, C.; Shen, H.; Li, W.; Wang, B. Emissions of PAHs from indoor crop residue burning in a typical rural stove: Emission factors, size distributions, and gas− particle partitioning. Environ. Sci. Technol. 2011, 45, 1206–1212. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Akyüz, M.; Çabuk, H. Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci. Total Environ. 2010, 408, 5550–5558. [Google Scholar] [CrossRef] [PubMed]
- Fleming, L.T.; Lin, P.; Laskin, A.; Laskin, J.; Weltman, R.; Edwards, R.D.; Arora, N.K.; Yadav, A.; Meinardi, S.; Blake, D.R. Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India. Atmos. Chem. Phys. 2018, 18, 2461–2480. [Google Scholar] [CrossRef]
- Fleming, L.T.; Weltman, R.; Yadav, A.; Edwards, R.D.; Arora, N.K.; Pillarisetti, A.; Meinardi, S.; Smith, K.R.; Blake, D.R.; Nizkorodov, S.A. Emissions from village cookstoves in Haryana, India, and their potential impacts on air quality. Atmos. Chem. Phys. 2018, 18, 15169–15182. [Google Scholar] [CrossRef]
- Weinstein, J.R.; Asteria-Peñaloza, R.; Diaz-Artiga, A.; Davila, G.; Hammond, S.K.; Ryde, I.T.; Meyer, J.N.; Benowitz, N.; Thompson, L.M. Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds among recently pregnant rural Guatemalan women cooking and heating with solid fuels. Int. J. Hyg. Environ. Health 2017, 220, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Albinet, A.; Tomaz, S.; Lestremau, F. A really quick easy cheap effective rugged and safe (QuEChERS) extraction procedure for the analysis of particle-bound PAHs in ambient air and emission samples. Sci. Total Environ. 2013, 450, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Gadi, R.; Singh, D.; Saud, T.; Mandal, T.; Saxena, M. Emission estimates of particulate PAHs from biomass fuels used in Delhi, India. Hum. Ecol. Risk Assess. Int. J. 2012, 18, 871–887. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Hsieh, Y.-K.; Huang, B.-W.; Mutuku, J.K.; Chang-Chien, G.-P.; Huang, S. An Overview: PAH and Nitro-PAH Emission from the Stationary Sources and their Transformations in the Atmosphere. Aerosol Air Qual. Res. 2022, 22, 220164. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Z.; Sun, J.; Zhang, L.; Zhang, B.; Zou, H.; Zhang, T.; Ho, S.S.H.; Chang, X.; Xu, H. Parent, alkylated, oxygenated and nitrated polycyclic aromatic hydrocarbons in PM2. 5 emitted from residential biomass burning and coal combustion: A novel database of 14 heating scenarios. Environ. Pollut. 2021, 268, 115881. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Tao, S.; Wang, W.; Yang, Y.; Ding, J.; Xue, M.; Min, Y.; Zhu, C.; Shen, H.; Li, W.; et al. Emission of Oxygenated Polycyclic Aromatic Hydrocarbons from Indoor Solid Fuel Combustion. Environ. Sci. Technol. 2011, 45, 3459–3465. [Google Scholar] [CrossRef]
- Shen, G.; Wei, S.; Zhang, Y.; Wang, R.; Wang, B.; Li, W.; Shen, H.; Huang, Y.; Chen, Y.; Chen, H. Emission of oxygenated polycyclic aromatic hydrocarbons from biomass pellet burning in a modern burner for cooking in China. Atmos. Environ. 2012, 60, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Tao, S.; Wei, S.; Zhang, Y.; Wang, R.; Wang, B.; Li, W.; Shen, H.; Huang, Y.; Chen, Y. Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Environ. Sci. Technol. 2012, 46, 8123–8130. [Google Scholar] [CrossRef]
- Orasche, J.; Schnelle-Kreis, J.; Schön, C.; Hartmann, H.; Ruppert, H.; Arteaga-Salas, J.M.; Zimmermann, R. Comparison of emissions from wood combustion. Part 2: Impact of combustion conditions on emission factors and characteristics of particle-bound organic species and polycyclic aromatic hydrocarbon (PAH)-related toxicological potential. Energy Fuels 2013, 27, 1482–1491. [Google Scholar] [CrossRef]
- Lea-Langton, A.; Baeza-Romero, M.; Boman, G.; Brooks, B.; Wilson, A.; Atika, F.; Bartle, K.; Jones, J.; Williams, A. A study of smoke formation from wood combustion. Fuel Process. Technol. 2015, 137, 327–332. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, B.; Zhang, L.; Zhang, Y.; Zhang, Q.; Wang, D.; Huang, Y.; Liu, S.; Cao, J. Chemical source profiles of particulate matter and gases emitted from solid fuels for residential cooking and heating scenarios in Qinghai-Tibetan Plateau. Environ. Pollut. 2021, 285, 117503. [Google Scholar] [CrossRef] [PubMed]
- L’Orange, C.; Volckens, J.; DeFoort, M. Influence of stove type and cooking pot temperature on particulate matter emissions from biomass cook stoves. Energy Sustain. Dev. 2012, 16, 448–455. [Google Scholar] [CrossRef]
- Shukla, B.; Koshi, M. A highly efficient growth mechanism of polycyclic aromatic hydrocarbons. Phys. Chem. Chem. Phys. 2010, 12, 2427–2437. [Google Scholar] [CrossRef] [PubMed]
- Pergal, M.M.; Tesic, Z.L.; Popović, A.R. Polycyclic aromatic hydrocarbons: Temperature driven formation and behavior during coal combustion in a coal-fired power plant. Energy Fuels 2013, 27, 6273–6278. [Google Scholar] [CrossRef]
- Thomas, S.; Wornat, M.J. The effects of oxygen on the yields of polycyclic aromatic hydrocarbons formed during the pyrolysis and fuel-rich oxidation of catechol. Fuel 2008, 87, 768–781. [Google Scholar] [CrossRef]
- Santamaria, A.; Yang, N.; Eddings, E.; Mondragon, F. Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels. Combust. Flame 2010, 157, 33–42. [Google Scholar] [CrossRef]
- Han, Y.; Chen, Y.; Feng, Y.; Song, W.; Cao, F.; Zhang, Y.; Li, Q.; Yang, X.; Chen, J. Different formation mechanisms of PAH during wood and coal combustion under different temperatures. Atmos. Environ. 2020, 222, 117084. [Google Scholar] [CrossRef]
- Jetter, J.; Zhao, Y.; Smith, K.R.; Khan, B.; Yelverton, T.; DeCarlo, P.; Hays, M.D. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ. Sci. Technol. 2012, 46, 10827–10834. [Google Scholar] [CrossRef]
- Zhi, G.; Peng, C.; Chen, Y.; Liu, D.; Sheng, G.; Fu, J. Deployment of coal briquettes and improved stoves: Possibly an option for both environment and climate. Environ. Sci. Technol. 2009, 43, 5586–5591. [Google Scholar] [CrossRef]
- Just, B.; Rogak, S.; Kandlikar, M. Characterization of ultrafine particulate matter from traditional and improved biomass cookstoves. Environ. Sci. Technol. 2013, 47, 3506–3512. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Huang, R.-J.; Yang, L.; Guo, J.; Chen, Z.; Duan, J.; Wang, T.; Ni, H.; Han, Y.; Li, Y. Characterization of the light-absorbing properties, chromophore composition and sources of brown carbon aerosol in Xi’an, northwestern China. Atmos. Chem. Phys. 2020, 20, 5129–5144. [Google Scholar] [CrossRef]
- Pagels, J.; Dutcher, D.D.; Stolzenburg, M.R.; McMurry, P.H.; Gälli, M.E.; Gross, D.S. Fine-particle emissions from solid biofuel combustion studied with single-particle mass spectrometry: Identification of markers for organics, soot, and ash components. J. Geophys. Res. Atmos. 2013, 118, 859–870. [Google Scholar] [CrossRef]
- Oanh, N.K.; Albina, D.; Ping, L.; Wang, X. Emission of particulate matter and polycyclic aromatic hydrocarbons from select cookstove–fuel systems in Asia. Biomass Bioenergy 2005, 28, 579–590. [Google Scholar] [CrossRef]
PAH Species | Angithi Dung (n = 9) | Chulha Dung (n = 10) | Chulha Mixed (n = 12) | Chulha Wood (n = 14) |
---|---|---|---|---|
NAP | 9.2 ± 1.2 | 3.1 ± 0.6 | 1.4 ± 0.3 | 1.7 ± 0.7 |
ACE/FLO | 7.2 ± 1.6 | 1.0 ± 0.5 | 0.1 ± 0.1 | 0.7 ± 0.2 |
PHE | 3.1 ± 0.5 | 0.9 ± 0.2 | 0.4 ± 0.1 | 0.4 ± 0.2 |
ANT | 0.7 ± 0.1 | 0.2 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 |
FLA | 6.6 ± 1.5 | 4.9 ± 1.1 | 3.5 ± 0.4 | 1.5 ± 0.5 |
PYR | 5.4 ± 1.2 | 4.5 ± 0.7 | 3.3 ± 0.5 | 1.7 ± 0.5 |
BaA/CHY | 2.1 ± 0.4 | 2.9 ± 0.5 | 2.7 ± 0.3 | 1.4 ± 0.2 |
BbF/BkF | 1.7 ± 0.4 | 3.8 ± 0.6 | 4.0 ± 0.4 | 2.9 ± 0.4 |
BaP | 1.4 ± 0.3 | 2.5 ± 0.3 | 2.5 ± 0.3 | 1.9 ± 0.2 |
DahA | 1.2 ± 0.2 | 1.1 ± 0.2 | 0.9 ± 0.1 | 0.7 ± 0.3 |
IcdP | 0.7 ± 0.2 | 1.3 ± 0.2 | 1.6 ± 0.2 | 1.0 ± 0.1 |
BaPe | 3.2 ± 0.6 | 4.3 ± 0.6 | 4.1 ± 0.4 | 3.0 ± 0.4 |
∑16-PAH EF | 39.3 ± 5.4 | 26.3 ± 3.4 | 20.6 ± 2.2 | 14.0 ± 2.5 |
Dependent | Model Includes | r2 | p Value | Independent | ||||
---|---|---|---|---|---|---|---|---|
EC | Summed PAH | 0.67 | <0.001 | Wood only | Mixed | (-) Angithi | Summed PAH | OC |
0.62 | 0.19 | 0.17 | 0.15 | 0.09 | ||||
Sum 5–6 ring | 0.72 | <0.001 | Wood only | Sum 5–6 ring | OC | (-) BaPE | (-) Angithi | |
0.63 | 0.18 | 0.16 | 0.13 | 0.09 | ||||
No PAH | 0.64 | <0.001 | MCE | CO | OC | Mixed | ||
0.50 | 0.42 | 0.19 | 0.13 | |||||
Summed PAH | BaPe | 0.86 | <0.001 | BaPe | (-) Angithi | (-) PM2.5 | ||
0.79 | 0.31 | 0.31 | ||||||
no BaPe | 0.56 | <0.001 | High/low | PM2.5 | Angithi | |||
0.26 | 0.24 | 0.11 | ||||||
5–6 ring | No PAH | 0.68 | <0.001 | MCE | (-) PM2.5 | (-) OC | ||
0.15 | 0.1 | 0.05 | ||||||
BaPe | Summed PAH | 0.8 | <0.001 | Summed PAH | (-) Angithi | high/low | (-) PM2.5 | |
0.71 | 0.19 | 0.12 | 0.12 | |||||
No Summed PAH | 0.39 | <0.001 | High/low | (-) Wood only | EC | (-) Mixed | ||
0.32 | 0.21 | 0.12 | 0.10 |
PAH Isomer Ratio | Wood in Chulha | Mixed Fuel in Chulha | Dung in Chulha | Dung in Angithi | Wood in Chinese Clay [57] | Wood in Nepalese Clay [57] |
---|---|---|---|---|---|---|
ANT/(ANT + PHE) | 0.35 ± 0.13 | 0.22 ± 0.06 | 0.18 ± 0.06 | 0.18 ± 0.01 | 0.25 | 0.07 |
FLT/(FLT + PYR) | 0.46 ± 0.08 | 0.53 ± 0.06 | 0.51 ± 0.16 | 0.55 ± 0.02 | 0.71 | 0.67 |
FLT/PYR | 0.90 ± 0.26 | 1.14 ± 0.29 | 1.15 ± 0.46 | 1.22 ± 0.08 | 2.4 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weltman, R.M.; Edwards, R.D.; Staimer, N.; Pillarisetti, A.; Arora, N.K.; Nizkorodov, S.A. Ethyne Furan Ratios as Indicators of High and Low Temperature p-PAH Emissions from Household Stoves in Haryana India. Atmosphere 2025, 16, 121. https://doi.org/10.3390/atmos16020121
Weltman RM, Edwards RD, Staimer N, Pillarisetti A, Arora NK, Nizkorodov SA. Ethyne Furan Ratios as Indicators of High and Low Temperature p-PAH Emissions from Household Stoves in Haryana India. Atmosphere. 2025; 16(2):121. https://doi.org/10.3390/atmos16020121
Chicago/Turabian StyleWeltman, Robert M., Rufus D. Edwards, Norbert Staimer, Ajay Pillarisetti, Narendra K. Arora, and Sergey A. Nizkorodov. 2025. "Ethyne Furan Ratios as Indicators of High and Low Temperature p-PAH Emissions from Household Stoves in Haryana India" Atmosphere 16, no. 2: 121. https://doi.org/10.3390/atmos16020121
APA StyleWeltman, R. M., Edwards, R. D., Staimer, N., Pillarisetti, A., Arora, N. K., & Nizkorodov, S. A. (2025). Ethyne Furan Ratios as Indicators of High and Low Temperature p-PAH Emissions from Household Stoves in Haryana India. Atmosphere, 16(2), 121. https://doi.org/10.3390/atmos16020121