Evaluating the Impact of Road Layout Patterns on Pedestrian-Level Ventilation Using Computational Fluid Dynamics (CFD)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Road Form Model
2.1.1. Road Orientation Model
2.1.2. Road Width Model
2.1.3. Road Density Model
2.1.4. Road Intersection Forms
2.2. Building Layout Model
2.3. Ventilation Efficiency Evaluation Index
2.4. Validation Experiment Data
2.5. Model Parameter Settings
2.5.1. Computational Domain and Grid
2.5.2. Boundary Conditions and Solver Settings
3. Results and Discussion
3.1. Grid Sensitivity Study
3.2. Model Validation Study
3.3. CFD Simulation Results
3.3.1. Models with Different Angles Between Roads and Prevailing Wind Direction
3.3.2. Impact of Different Road Widths on Ventilation Capacity
3.3.3. Impact of Different Road Densities on Ventilation Capacity
3.3.4. Impact of Road Intersection Forms on Ventilation Capacity
3.4. Contributions and Limitations of the Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
CFD | Computational fluid dynamics |
GCI | Grid convergence index |
STD | Standard k-ε |
RNG | RNG k-ε |
References
- World Health Organization. Air Pollution. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 17 January 2025).
- Zhang, S.H.; Zhang, C.; Cai, W.J.; Bai, Y.Q.; Callaghan, M.; Chang, N.; Chen, B.; Chen, H.Q.; Cheng, L.L.; Dai, H.C.; et al. The 2023 China report of the Lancet Countdown on health and climate change: Taking stock for athriving future. Lancet Public Health 2023, 8, E978–E995. [Google Scholar] [CrossRef] [PubMed]
- Palusci, O.; Monti, P.; Cecere, C.; Montazeri, H.; Blocken, B. Impact of morphological parameters on urban ventilation in compact cities: The case of the Tuscolano-Don Bosco district in Rome. Sci. Total Environ. 2022, 807, 25. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Luo, Z.W.; Liu, J.; Wang, Y.W.; Lin, Y.Y. Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing, China. Sci. Total Environ. 2018, 626, 546–554. [Google Scholar] [CrossRef]
- Liu, D.D.; Zhou, S.H.; Wang, L.J.; Chi, Q.; Zhu, M.Y.; Tang, W.C.; Zhao, X.; Xu, S.Q.; Ye, S.Y.; Lee, J.Y.; et al. Research on the Planning of an Urban Ventilation Corridor Based on the Urban Underlying Surface Taking Kaifeng City as an Example. Land 2022, 11, 15. [Google Scholar] [CrossRef]
- Wang, W.W.; Wang, D.; Chen, H.; Wang, B.Y.; Chen, X. Identifying urban ventilation corridors through quantitative analysis of ventilation potential and wind characteristics. Build. Environ. 2022, 214, 15. [Google Scholar] [CrossRef]
- Bas, H.; Andrianne, T.; Reiter, S. City configurations to optimise pedestrian level ventilation and wind comfort. Sustain. Cities Soc. 2024, 114, 21. [Google Scholar] [CrossRef]
- Ng, E. Policies and technical guidelines for urban planning of high-density cities—Air ventilation assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478–1488. [Google Scholar] [CrossRef]
- Li, X.S.; Lin, K.; Cheng, D.; Zou, H.; Shu, Y.L.; Jin, Z.G.; Zhu, J.B. Meteorological effects of ventilation corridor in central urban areas: A case study of Wuhan. Sustain. Cities Soc. 2024, 114, 18. [Google Scholar] [CrossRef]
- Zheng, Z.F.; Ren, G.Y.; Gao, H.; Yang, Y.J. Urban ventilation planning and its associated benefits based on numerical experiments: A case study in beijing, China. Build. Environ. 2022, 222, 11. [Google Scholar] [CrossRef]
- Vilao, D.; Ramos, I.L. Lisbon Urban Climate: Statistical Analysis/Approach for Urban Heat Island Effect Based on a Pioneering Urban Meteorological Network. Atmosphere 2024, 15, 35. [Google Scholar] [CrossRef]
- Ding, P.X.; Zhou, X.Q. Numerical Study on Effects of Heights and Widths on Airflow and Pollutant Dispersion around a Building. KSCE J. Civ. Eng. 2024, 28, 1645–1656. [Google Scholar] [CrossRef]
- Zhong, W.Z.; Pan, Y.J.; Xiao, W.; Zhang, T. Identifying bioclimatic techniques for sustainable low-rise high-density residential units: Comparative analysis on the ventilation performance of vernacular dwellings in China. J. Build. Eng. 2023, 80, 20. [Google Scholar] [CrossRef]
- Aggoune-Mtalaa, W.; Laib, M. Analyzing Air Pollution and Traffic Data in Urban Areas in Luxembourg. Smart Cities 2023, 6, 929–943. [Google Scholar] [CrossRef]
- Harrison, R.M.; Van Vu, T.; Jafar, H.; Shi, Z.B. More mileage in reducing urban air pollution from road traffic. Environ. Int. 2021, 149, 8. [Google Scholar] [CrossRef]
- Feng, W.; Ding, W.; Fei, M.M.; Yang, Y.J.; Zou, W.H.; Wang, L.; Zhen, M. Effects of traditional block morphology on wind environment at the pedestrian level in cold regions of Xi’an, China. Environ. Dev. Sustain. 2021, 23, 3218–3235. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Yang, Y.; Huo, Q.N.; Dong, M.; Zhen, H.R.; Yu, Y.J.; Zhao, T.J. Study on the influence of the coupling of wind direction and branch angle on the ventilation performance of trigeminal street canyon. In Proceedings of the 2nd International Conference on Applied Mathematics Modelling, and Intelligent Computing (CAMMIC), Electr Network, Kunming, China, 25–27 March 2022. [Google Scholar]
- Jon, K.S.; Huang, Y.D.; Sin, C.H.; Cui, P.Y.; Luo, Y. Influence of wind direction on the ventilation and pollutant dispersion in different 3D street canyon configurations: Numerical simulation and wind-tunnel experiment. Environ. Sci. Pollut. Res. 2023, 30, 31624–31652. [Google Scholar] [CrossRef]
- Sin, C.H.; Jon, K.S.; Un, G.H.; Thae, Y.I.; Kim, H.; Tokgo, J.; Ri, H.M. Evaluation of the ventilation and pollutant exposure risk level inside 3D street canyon with void deck under different wind directions. Environ. Sci. Pollut. Res. 2023, 30, 61808–61828. [Google Scholar] [CrossRef]
- Juan, Y.H.; Li, Z.T.; Lee, Y.T.; Wen, C.Y.; Yang, A.S. Effect of wind-based climate-responsive design on city breathability of a compact high-rise city. J. Build. Eng. 2023, 78, 23. [Google Scholar] [CrossRef]
- Li, J.Y.; You, W.; Peng, Y.L.; Ding, W.W. Exploring the potential of the aspect ratio to predict flow patterns in actual urban spaces for ventilation design by comparing the idealized and actual canyons. Sust. Cities Soc. 2024, 102, 28. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, Q.M.; Tayyab, M. The Ventilation Path Assessment of Urban Street in Wuhan. Pol. J. Environ. Stud. 2021, 30, 2877–2889. [Google Scholar] [CrossRef]
- Akhter, M.N.; Ali, M.E.; Rahman, M.M.; Hossain, M.N.; Molla, M.M. Simulation of air pollution dispersion in Dhaka city street canyon. AIP Adv. 2021, 11, 11. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, Q.M.; Tayyab, M.; Zahra, A. The Ventilation Efficiency of Urban Built Intensity and Ventilation Path Identification: A Case Study of Wuhan. Int. J. Environ. Res. Public Health 2021, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.X.; Wu, Y.; Zang, J.B. A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures. Energies 2021, 14, 21. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Cehlin, M.; Ameen, A.; Sandberg, M.; Wallhagen, M. Influence of Urban Morphologies on the Effective Mean Age of Air at Pedestrian Level and Mass Transport Within Urban Canopy Layer. Buildings 2024, 14, 33. [Google Scholar] [CrossRef]
- Li, J.Y.; Guo, F.; Chen, H. A study on urban block design strategies for improving pedestrian-level wind conditions: CFD-based optimization and generative adversarial networks. Energy Build. 2024, 304, 20. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for Comprehensive Urban Transportation Planning (GBT 51328-2018). Available online: https://www.mohurd.gov.cn/gongkai/zc/wjk/art/2019/art_17339_239844.html (accessed on 17 January 2025).
- He, Y.Y.; Liu, Z.X.; Ng, E. Parametrization of irregularity of urban morphologies for designing better pedestrian wind environment in high-density cities-A wind tunnel study. Build. Environ. 2022, 226, 15. [Google Scholar] [CrossRef]
- Niu, S.N.; Tong, H.; Liu, X.D.; Wang, A.N.; Chen, L.F.; Song, D.; Zhou, X.; Shi, X.; Jin, X. A quick simulation workflow to optimizing natural ventilation for building and landscape design. Energy Build. 2024, 324, 15. [Google Scholar] [CrossRef]
- Guo, X.; Buccolieri, R.; Gao, Z.; Zhang, M.J.; Lyu, T.; Rui, L.Y.; Shen, J.L. On the effects of urban-like intersections on ventilation and pollutant dispersion. Build. Simul. 2022, 15, 419–433. [Google Scholar] [CrossRef]
- Guo, H.L.; Zhou, Y.; Li, Y.X.; Zhang, Z.H.; Li, H. An Experiment-Based Simplified Method for the Model of Building Groups in CFD Simulation. Adv. Civ. Eng. 2021, 2021, 13. [Google Scholar] [CrossRef]
- Zeng, L.Y.; Zhang, X.L.; Lu, J.; Li, Y.C.; Hang, J.; Hua, J.J.; Zhao, B.; Ling, H. Influence of Various Urban Morphological Parameters on Urban Canopy Ventilation: A Parametric Numerical Study. Atmosphere 2024, 15, 19. [Google Scholar] [CrossRef]
- Wijesooriya, K.; Mohotti, D.; Lee, C.K.; Mendis, P. A technical review of computational fluid dynamics (CFD) applications on wind design of tall buildings and structures: Past, present and future. J. Build. Eng. 2023, 74, 24. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhong, K.; Xu, J.J.; Kang, Y.M. A simplified numerical method for modelling the wind flow and ventilation at urban-scale street network. Build. Environ. 2023, 239, 15. [Google Scholar] [CrossRef]
- Jing, Y.; Zhong, H.Y.; Wang, W.W.; He, Y.; Zhao, F.Y.; Li, Y.G. Quantitative city ventilation evaluation for urban canopy under heat island circulation without geostrophic winds: Multi-scale CFD model and parametric investigations. Build. Environ. 2021, 196, 15. [Google Scholar] [CrossRef]
- Wu, L.N.; Chen, J.; Du, Z.M. Research on Optimization of Building Ventilation Environment Based on Simulation Analysis of PHOENICS An Example of Global Villa in Guangzhou. In Proceedings of the 2nd International Conference for Information Systems and Design (ICID), Xi’an, China, 19 October 2021; pp. 84–87. [Google Scholar]
- He, Y.Y.; Tablada, A.; Wong, N.H. A parametric study of angular road patterns on pedestrian ventilation in high-density urban areas. Build. Environ. 2019, 151, 251–267. [Google Scholar] [CrossRef]
- Juan, Y.H.; Rezaeiha, A.; Montazeri, H.; Blocken, B.; Yang, A.S. Improvement of wind energy potential through building corner modifications in compact urban areas. J. Wind Eng. Ind. Aerodyn. 2024, 248, 21. [Google Scholar] [CrossRef]
- Okaze, T.; Kikumoto, H.; Ono, H.; Imano, M.; Ikegaya, N.; Hasama, T.; Nakao, K.; Kishida, T.; Tabata, Y.; Nakajima, K.; et al. Large-eddy simulation of flow around an isolated building: A step-by-step analysis of influencing factors on turbulent statistics. Build. Environ. 2021, 202, 17. [Google Scholar] [CrossRef]
- Sari, E.N.; Yilmaz, S. The Effect on Air Pollution Distribution of Wind in Different Street Canyons: The Case of Erzurum. Planlama 2021, 31, 466–479. [Google Scholar] [CrossRef]
- da Silva, F.T.; Reis, N.C.; Santos, J.M.; Goulart, E.V.; de Alvarez, C.E. Influence of urban form on air quality: The combined effect of block typology and urban planning indices on city breathability. Sci. Total Environ. 2022, 814, 13. [Google Scholar] [CrossRef]
- He, Y.Y.; Wong, C.H.M.; Deng, J.Y.; Liu, Z.X.; Ng, E. Designing breezeways to enhance wind environments in high-density cities: A comprehensive analysis of ten morphological parameters. Sustain. Cities Soc. 2024, 116, 22. [Google Scholar] [CrossRef]
- Maing, M. Superblock transformation in Seoul Megacity: Effects of block densification on urban ventilation patterns. Landsc. Urban Plan. 2022, 222, 16. [Google Scholar] [CrossRef]
- Alvarado-Molina, M.; Curto, A.; Wheeler, A.J.; Tham, R.; Cerin, E.; Nieuwenhuijsen, M.; Vermeulen, R.; Donaire-Gonzalez, D. Improving traffic-related air pollution estimates by modelling minor road traffic volumes. Environ. Pollut. 2023, 338, 10. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.H.; Sun, C.W.; Wei, H.Y.; Hou, X.S. Road construction and air pollution: Analysis of road area ratio in China. Appl. Energy 2023, 351, 10. [Google Scholar] [CrossRef]
- Makvandi, M.; Yuan, P.F.; Ji, Q.F.; Li, C.C.; Elsadek, M.; Li, W.J.; Hassan, A.; Li, Y. Resilience to climate change by improving air circulation efficiency and pollutant dispersion in cities: A 3D-UFO approach to urban block design. Heliyon 2024, 10, 23. [Google Scholar] [CrossRef]
- Maison, A.; Flageul, C.; Carissimo, B.; Tuzet, A.; Sartelet, K. Parametrization of Horizontal and Vertical Transfers for the Street-Network Model MUNICH Using the CFD Model Code_Saturne. Atmosphere 2022, 13, 19. [Google Scholar] [CrossRef]
- Zhou, J.C.; Liu, J.F.; Xiang, S.L.; Zhang, Y.Z.; Wang, Y.Q.; Ge, W.D.; Hu, J.Y.; Wan, Y.; Wang, X.J.; Liu, Y.; et al. Evaluation of the Street Canyon Level Air Pollution Distribution Pattern in a Typical City Block in Baoding, China. Int. J. Environ. Res. Public Health 2022, 19, 14. [Google Scholar] [CrossRef]
- Zhang, M.J.; Gao, Z.; Guo, X.; Shen, J.L. Ventilation and Pollutant Concentration for the Pedestrian Zone, the Near-Wall Zone, and the Canopy Layer at Urban Intersections. Int. J. Environ. Res. Public Health 2021, 18, 23. [Google Scholar] [CrossRef]
Wind Direction and Road Intersection Angle | Mean Air Age(s) |
---|---|
0° | 245.8378 |
10° | 333.0408 |
20° | 336.4999 |
30° | 330.8685 |
40° | 319.0469 |
50° | 302.9407 |
60° | 284.5542 |
70° | 269.4638 |
80° | 263.3725 |
90° | 262.0616 |
Type of Road | Width (m) | Mean Air Age (s) |
---|---|---|
Spue road | 14 | 733.1439 |
16 | 691.5106 | |
18 | 684.7663 | |
20 | 687.8025 | |
Secondary road | 22 | 652.8138 |
24 | 651.9089 | |
26 | 654.2791 | |
28 | 627.6394 | |
30 | 650.1060 | |
32 | 623.0651 | |
34 | 538.3546 | |
Trunk road | 40 | 535.7709 |
42 | 538.3824 | |
44 | 477.5441 | |
46 | 457.2494 | |
48 | 464.8015 | |
50 | 460.1007 |
Type of Road | Distance (m) | Mean Air Age (s) |
---|---|---|
Spue road | 150 | 274.3000 |
175 | 262.0653 | |
200 | 250.1670 | |
225 | 249.3367 | |
250 | 268.6297 | |
Secondary road | 350 | 441.3983 |
400 | 458.7060 | |
450 | 452.6969 | |
500 | 449.3969 | |
Trunk road | 800 | 870.3474 |
900 | 846.9341 | |
1000 | 881.5802 | |
1100 | 891.8147 | |
1200 | 908.8112 |
Type of Road | Angle of Rotation | Age of Air (s) |
---|---|---|
orthogonal | 0° | 254.4644 |
One-way forward rotation | 45° | 266.5024 |
60° | 259.6972 | |
75° | 257.2023 | |
One-way reverse rotation | 45° | 280.5455 |
60° | 271.5965 | |
75° | 275.2031 | |
Opposite two-way rotation | 45° | 284.6735 |
60° | 280.0662 | |
75° | 279.2981 | |
Adjacent two-way rotation | 45° | 262.7773 |
60° | 269.3913 | |
75° | 267.9079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Han, B.; Chu, Y.; Shi, Y.; Huang, N.; Shi, T. Evaluating the Impact of Road Layout Patterns on Pedestrian-Level Ventilation Using Computational Fluid Dynamics (CFD). Atmosphere 2025, 16, 123. https://doi.org/10.3390/atmos16020123
Li Z, Han B, Chu Y, Shi Y, Huang N, Shi T. Evaluating the Impact of Road Layout Patterns on Pedestrian-Level Ventilation Using Computational Fluid Dynamics (CFD). Atmosphere. 2025; 16(2):123. https://doi.org/10.3390/atmos16020123
Chicago/Turabian StyleLi, Zhenxing, Bijun Han, Yaqi Chu, Yu Shi, Na Huang, and Tiemao Shi. 2025. "Evaluating the Impact of Road Layout Patterns on Pedestrian-Level Ventilation Using Computational Fluid Dynamics (CFD)" Atmosphere 16, no. 2: 123. https://doi.org/10.3390/atmos16020123
APA StyleLi, Z., Han, B., Chu, Y., Shi, Y., Huang, N., & Shi, T. (2025). Evaluating the Impact of Road Layout Patterns on Pedestrian-Level Ventilation Using Computational Fluid Dynamics (CFD). Atmosphere, 16(2), 123. https://doi.org/10.3390/atmos16020123