Assessment of Natural Radioactivity and Trace Element Composition of Coals and Ash and Slag Waste in Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adrovic, F.; Prokic, M.; Nincovic, M.M.; Glissic, N. Measurements of environmental background radiation at location of coal-fired power plants. Radiat. Prot. Dosim. 2004, 112, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Kopobayeva, A.; Baidauletova, I.; Amangeldikyzy, A.; Askarova, N. Trace Elements Distribution in the k7 Seam of the Karaganda Coal Basin, Kazakhstan. Geosciences 2024, 14, 143. [Google Scholar] [CrossRef]
- Junussov, M.; Mustapayeva, S. Preliminary XRF Analysis of Coal Ash from Jurassic and Carboniferous Coals at Five Kazakh Mines: Industrial and Environmental Comparisons. Appl. Sci. 2024, 14, 10586. [Google Scholar] [CrossRef]
- Schneider, L.; Neil, R.L.; Lintern, A.; Sinclair, D.; Zawadzki, A.; Holley, C.; Aquino-López, M.A.; Haberle, S. Assessing environmental contamination from metal emission and relevant regulations in major areas of coal mining and electricity generation in Australia. Sci. Total Environ. 2020, 728, 137–398. [Google Scholar] [CrossRef]
- Clarke, L.B. The fate of trace elements during coal combustion and gasification: An overview. Fuel 1993, 72, 731–733. [Google Scholar] [CrossRef]
- Popov, O.; Iatsyshyn, A.; Kovach, V.; Artemchuk, V.; Kameneva, I.; Radchenko, O.; Nikolaiev, K.; Stanytsina, V.; Iatsyshyn, A.; Romanenko, Y. Effect of Power Plant Ash and Slag Disposal on the Environment and Population Health in Ukraine. J. Health Pollut. 2021, 11, 210910. [Google Scholar] [CrossRef]
- Ibragimova, D.A.; Arbuzov, S.I.; Portnov, V.S. Metalliferous coals of Shubarkol deposit (Central Kazakhstan). Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2023, 334, 26–39. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Jiu, B.; Sun, Q.; Che, Q. Modes of Occurrence and Origin of Minerals in Permian Coals from the Huainan Coalfield, Anhui, China. Minerals 2020, 10, 399. [Google Scholar] [CrossRef]
- Osborne, D.; Jahandari, S.; Tao, Z.; Chen, Z.; Khazaie, A.; Rahme, M. Creating Additional Revenue Streams Prior to the Disposal of Tailings. Int. J. Energy Clean Environ. 2023, 24, 1–14. [Google Scholar] [CrossRef]
- Rhodes, R.; Beller, D. The Need for Nuclear Energy: A Look at the World’s Difficult Energy Future. IAEA Bull. Austria 2000, 42, 43–50. [Google Scholar]
- Ermagambet, B.T.; Nurgaliev, N.U.; Kasenova, Z.M.; Urlibay, R.K.; Bolat, O.S.; Semenova, Y.A. Technology of Processing Ash and Slag Waste of Kazakhstan. Collection of Abstracts for the Scientific and Practical Conference: “Coal Thermal Power Engineering in Kazakhstan: Problems. Solutions. Development Prospects”. 2020. pp. 82–86. Available online: https://nur.nu.edu.kz/server/api/core/bitstreams/1a776562-9e3e-4fbf-99c7-03c08a047551/content (accessed on 19 January 2025).
- Joshi, R.C.; Lothia, R.P. Fly ash in concrete: Production, properties and uses. In Advances in Concrete Technology; Gordon and Breach Science Publishers: London, UK, 1997; Volume 2, ISBN 90-5699-580-4. [Google Scholar]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Sidorova, G.P.; Krylov, D.A.; Ovcharenko, N.V. Radiation situation in the areas of coal-fired thermal power plants in Russia. Bull. ZabSU 2017, 23, 36–44. [Google Scholar] [CrossRef]
- Junussov, M.; Tarikhov, F.; Abildakhanov, A.; Zhanaidar, D.; Mekenbek, G.; Assambayeva, A. Mineralogical and elemental analysis of Kazakh coals from three mines: Preliminary insights from mode of occurrence to environmental impacts. Open Geosci. 2024, 16, 1–21. [Google Scholar] [CrossRef]
- Getaldic, A.; Suric Mihic, M.; Veinovic, Z.; Skoko, B.; Petrinec, B.; Prlic, I. Comparison of Different Radiological Risk Assessment Scenarios at a Coal Ash and Slag Disposal Site. Minerals 2023, 13, 832. [Google Scholar] [CrossRef]
- Revenko, A.G.; Pashkova, G.V. Study of the Chemical Composition of Coal and Coal Ash by X-ray Fluorescence Method: A Review. X-Ray Spectrom 2024, 1. [Google Scholar] [CrossRef]
- Kazhumukhanova, M.Z. Toxic Impurity Elements in Coals of the Republic of Kazakhstan//Ecogeochemistry of Organic Fuel and Environmental Problems of Territories. TPU. 2015; pp. 361–364. 2015, p. 361. Available online: https://earchive.tpu.ru/bitstream/11683/15617/1/conference_tpu-2015-C66-v2-154.pdf (accessed on 4 December 2024).
- Seredin, V.V.; Finkelman, R.B. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 2008, 76, 253–289. [Google Scholar] [CrossRef]
- Pak, Y.; Nurguzhin, M.R.; Pak, D.Y.; Tebayeva, A.Y.; Nikolaenko, N.A. Instrumental Method for Radiometric Determination of Specific Radioactivity of Ash and Slag Waste. Eurasian Patent No. 047897, 2024. Available online: https://old.eapo.org/ru/publications/publicat/viewbull.php?bull=2024-09&id=047897&kind=B1 (accessed on 19 January 2025).
- de Lurdes Dinis, M.; Fiúza, A.; Góis, J.; de Carvalho, J.S.; Castro, C.M.A. Assessment of Natural Radioactivity, Heavy Metals and Particulate Matter in Air and Soil around a Coal-Fired Power Plant—An Integrated Approach. Atmosphere 2021, 12, 1433. [Google Scholar] [CrossRef]
- Pak, Y.; Pak, D.; Nuguzhinov, Z.; Tebayeva, A. Natural radioactivity of coal in the context of radioecological safety and rational use. Izvestia vuzov. Min. J. 2021, 1, 97–106. [Google Scholar] [CrossRef]
- Han, F.; Chen, J.; Zhang, L.; Wang, H. Mineralogical characteristics and chemical structure of low-temperature ash of bituminous coal under controlled atmosphere. Fuel 2022, 309, 122981. [Google Scholar] [CrossRef]
- Zhang, J.; Chun, L.H.; Yi, Q.X. The release of hazardous elements from coal in the initial stage of combustion process. Fuel Process. Technol. 2003, 84, 121–133. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.; Yang, J.; Zhang, J.; Zheng, C. Emission and Control of Trace Elements from Coal-Derived Gas Streams, 1st ed.; Woodhead Publishing: Sawston, UK, 2019; ISBN 9780081026526. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic, Radiation. Ionizing Radiation: Sources and Effects; UNSCEAR 1982 Report to the General Assembly, with annexes; United Nations Scientific Committee on the Effects of Atomic Radiation: New York, NY, USA, 1982; 773p, ISBN 92-1-142200-0. [Google Scholar]
- Holm, L. ICRP and the progress towards new recommendations. In Proceedings of the XIII Ordinary Meeting on Radiation Protection in the 2000s—Theory and Practice. Nordic Society for Radiation Protection, STUK-A195, Turku, Finland, 25-29 August 2002; pp. 23–30. [Google Scholar]
- Annex, D.; United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation; UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes; United Nations Scientific Committee on the Effects of Atomic Radiation: New York, NY, USA, 2000; Volume I, 654p, ISBN 92-1-142238-8. [Google Scholar]
- Walenchik-Lata, A.; Smolka-Danielowska, D. 234U, 238U, 226Ra, 228Ra and 40K concentrations in feed coal and its combustion products during technological processes in the Upper Silesian Industrial Region, Poland. Environ. Pollut. 2020, 267, 115–462. [Google Scholar] [CrossRef]
- Bhangare, R.C.; Ajmal, P.Y.; Sahu, S.K.; Puranik, V.D. Distribution of trace elements in coal and combustion residues from five thermal power plants in India. Int. J. Coal Geol. 2011, 86, 349–356. [Google Scholar] [CrossRef]
- Dragovic, S.; Jankovic, L.; Onjia, A. Assessment of gamma dose rates from terrestrial exposure in Serbia and Montenegro. Radiat. Prot. Dosim. 2006, 121, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.; Pauzi, A.M.; Ahmad, N.; Karim, N.A.; Wazir, M.; Zaiul Bahri, C.; Idris, M.I. Natural radioactivity analysis and radiological impact assessment from a coal power plant. Int. J. Radiat. Res. 2023, 21, 797–804. [Google Scholar] [CrossRef]
- Cherepovsky, V.F. Valuable and Toxic Elements in Commercial Coals of Russia. 1996; 238p. ISBN 5-247-03570-4. Available online: https://pubs.usgs.gov/of/2001/ofr-01-104/fsucoal/html/readme.htm (accessed on 19 January 2025).
Series | Radionuclide | Borly | Borly | Ekibastuz | Ekibastuz |
---|---|---|---|---|---|
Bq/kg | |||||
Coal | ASW | Coal | ASW | ||
U238 | U238 | 26.2 | 68.2 | 17.5 | 33.5 |
Th234 | 26.2 | 68.2 | 17.5 | 33.5 | |
Pb214 | 26.3 | 65.2 | 24.1 | 34.5 | |
Pb210 | 43.3 | 75.1 | 18.3 | 24.3 | |
Ra226 | 22.0 | 64.2 | 18.4 | 32.9 | |
Bi214 | 23.4 | 59.7 | 24.6 | 33.0 | |
Th232 | Th232 | 21.8 | 45.4 | 15.2 | 30.4 |
Ac228 | 21.8 | 45.4 | 15.2 | 30.4 | |
Pb212 | 20.9 | 44.3 | 16.3 | 32.2 | |
Ra224 | 20.1 | 42.8 | 17.0 | 30.2 | |
Bi212 | 16.2 | 46.1 | 18.5 | 34.3 | |
Tl208 | 7.2 | 15.2 | 5.3 | 11.1 | |
K40 | <23 | 113.0 | 97.0 | 144.0 |
Deposit | Number of Samples | Sample | INAA | |||
---|---|---|---|---|---|---|
U, g/t | Th, g/t | K40, Bq/kg | Th/U, g/t | |||
Ekibastuz | 11 | Coal | 0.8–1.5 | 2.6–3.6 | 61.4–87.6 | 3.3–2.4 |
1.2 | 3.1 | 79.8 | ||||
9 | Ash and slag waste | 4.2–8.2 | 11.8–17.9 | 112.1–243 | 2.8–2.9 | |
7.1 | 14.9 | 198.6 |
Deposit | Name | * Ad, % | Ra226 | Th232 | K40 |
---|---|---|---|---|---|
BQ/kg | |||||
Ekibastuz | Ash | 53.0–70.0 | 50.0–74.0 | 170–267 | |
Coal | 36.0 | 11.2–14.9 | 11.7–13.0 | 63 | |
Karaganda, Kostenko mine | Ash | 54.0–118.0 | 39.0–53.0 | 190.0–261.0 | |
Coal | 35.0 | 20.0–24.0 | 12.0–14.0 | 39.2–47.0 | |
Borly | Ash | 185.0 | 131.0 | 294 | |
Coal | 39.9 | 33.5 | 26 | 34 |
No | Element | %; μg/g | Coal | ASW | |||
---|---|---|---|---|---|---|---|
Karaganda | Borly | Ekibastuz | Ekibastuz | Borly | |||
1 | Al | % | 3.82–4.61 | 8.11 | 6.41–7.78 | 10.45 | 13.15 |
2 | Si | % | 2.56–3.47 | 15.79 | 14.33–17.92 | 26.79 | 25.78 |
3 | Fe | % | 0.5–0.9 | 0.7 | 1.2–2.3 | 9.1 | 2.3 |
4 | Cu | μg/g | 48.0–50.0 | 38.0 | 37.6–52.0 | 73.0 | 68.0 |
5 | Zn | μg/g | 33.4–94.8 | 195.4 | 23.2–25.0 | 31.0 | 129.0 |
6 | Pb | μg/g | 152.0 | <10 | <10 | 18.5 | 18.0 |
7 | Cd | μg/g | 5.7–6.2 | 5.0 | 4.4–4.7 | 3.3 | 4.3 |
8 | K | % | 0.16–0.19 | 0.35 | 0.53–0.68 | 0.6 | 0.56 |
9 | Ca | % | 1.19–1.28 | <0.1 | 0.19–1.51 | 1.89 | 0.15 |
10 | Ti | % | 0.099–0.152 | 0.469 | 0.323–0.45 | 0.695 | 0.991 |
11 | V | μg/g | 120–180 | <100 | 100–150 | 110 | 130 |
12 | Mn | μg/g | 100–117 | <100 | 201–365 | 1680 | <100 |
13 | Ni | μg/g | 38–64 | 16 | 35–65 | 34 | 22 |
14 | Ga | μg/g | <10 | 21.6 | 14.0–19.9 | 19.9 | 32.9 |
15 | Rb | μg/g | 11.5–13.3 | <10 | 13.4–18.1 | 16.3 | 18.3 |
16 | Sr | μg/g | 2520–3941 | 85.0 | 187.1–276.2 | 375.0 | 151.6 |
17 | Y | μg/g | 23.8–25.1 | 37.8 | 22.6–24.7 | 46 | 61 |
18 | Zr | μg/g | 30.8 | 236.2 | 125.0–167.3 | 265.6 | 403.8 |
19 | Mo | μg/g | 2.0–3.0 | 4.8 | 4.2–5.7 | 3.5 | 5.5 |
20 | Co | μg/g | 6.9–8.0 | 15.9 | 4.7–7.2 | 13.5 | 59.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pak, Y.; Pak, D.; Ibragimova, D.; Matonin, V.; Tebayeva, A. Assessment of Natural Radioactivity and Trace Element Composition of Coals and Ash and Slag Waste in Kazakhstan. Atmosphere 2025, 16, 125. https://doi.org/10.3390/atmos16020125
Pak Y, Pak D, Ibragimova D, Matonin V, Tebayeva A. Assessment of Natural Radioactivity and Trace Element Composition of Coals and Ash and Slag Waste in Kazakhstan. Atmosphere. 2025; 16(2):125. https://doi.org/10.3390/atmos16020125
Chicago/Turabian StylePak, Yuriy, Dmitriy Pak, Diana Ibragimova, Vladimir Matonin, and Anar Tebayeva. 2025. "Assessment of Natural Radioactivity and Trace Element Composition of Coals and Ash and Slag Waste in Kazakhstan" Atmosphere 16, no. 2: 125. https://doi.org/10.3390/atmos16020125
APA StylePak, Y., Pak, D., Ibragimova, D., Matonin, V., & Tebayeva, A. (2025). Assessment of Natural Radioactivity and Trace Element Composition of Coals and Ash and Slag Waste in Kazakhstan. Atmosphere, 16(2), 125. https://doi.org/10.3390/atmos16020125