Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS) Simulations with Aircraft and Tower Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area
Land Cover | RAMS db | CORINE db | ||
---|---|---|---|---|
Area (km2) | Percentage of the Total Area (%) | Area (km2) | Percentage of the Total Area (%) | |
Cropland | 140 | 2.3 | 1,308 | 21.5 |
Deciduous forest | 0 | 0 | 12 | 0.2 |
Coniferous forest | 5,536 | 91 | 3,218 | 52.9 |
Mixed woodland | 0 | 0 | 974 | 16 |
Wetland | 0 | 0 | 97 | 1.6 |
Urban and built up areas | 61 | 1 | 116 | 1.9 |
Sea and lakes | 347 | 5.7 | 359 | 5.9 |
Total | 6,084 | 100 | 6,084 | 100 |
2.2. Tower Site and Data
2.3. Aircraft Data
Flight No. | Date | Flight Time (UTC) | zmax (m) |
---|---|---|---|
1 | 15.08.2001 | 12:17–14:00 | 900 |
2 | 16.08.2001 | 06:24–08:09 | 1,200 |
3 | 16.08.2001 | 14:12–15:52 | 900 |
4 | 17.08.2001 | 06:11–07:55 | 1,300 |
5 | 17.08.2001 | 12:14–14:11 | 1,600 |
6 | 18.08.2001 | 06:35–08:18 | 900 |
7 | 18.08.2001 | 12:08–13:51 | 1,300 |
8 | 19.08.2001 | 06:48–08:35 | 1,100 |
9 | 19.08.2001 | 10:05–11:57 | 1,400 |
10 | 19.08.2001 | 13:37–15:21 | 1,400 |
11 | 19.08.2001 | 17:07–18:47 | 1,100 |
2.4. RAMS Application
3. Results and Discussion
3.1. Vertical Profiles and Boundary Layer Height
Flight No. | u (m·s−1) | T (°C) | RH (%) | |
---|---|---|---|---|
1 | 1.20 | 1.26 | 15.33 | |
2 | 1.34 | 1.22 | 16.16 | |
3 | 1.55 | 2.19 | 21.54 | |
4 | 1.42 | 1.00 | 11.72 | |
5 | 2.67 | 1.78 | 27.53 | |
6 | 2.91 | 1.43 | 7.44 | |
7 | 1.09 | 1.62 | 8.25 | |
8 | 2.98 | 1.52 | 9.03 | |
9 | 0.95 | 2.08 | 11.53 | |
10 | 1.72 | 2.46 | 23.04 | |
11 | 1.23 | 2.31 | 10.23 | |
Average | 1.73 | 1.72 | 14.71 |
3.2. Surface Fluxes and Meteorology
Date | u (m·s−1) | T (°C) | w (g·kg−1) | H(W·m−2) | LE (W·m−2) |
---|---|---|---|---|---|
14.08.2001 | 1.82 | 1.33 | no data | 68.40 | 78.51 |
15.08.2001 | 1.62 | 2.17 | 1.11 | 67.65 | 102.61 |
16.08.2001 | 2.07 | 2.23 | 1.18 | 61.35 | 109.49 |
17.08.2001 | 2.15 | 1.31 | 1.62 | 67.59 | 60.54 |
18.08.2001 | 1.77 | 1.34 | 0.52 | 98.30 | 50.26 |
19.08.2001 | 1.20 | 1.25 | 1.06 | 61.74 | 51.46 |
20.08.2001 | 2.57 | 3.26 | 1.20 | 144.42 | 62.15 |
21.08.2001 | 1.69 | 2.40 | 0.93 | 87.46 | 46.45 |
22.08.2001 | 1.22 | 1.14 | 0.69 | 64.39 | 67.17 |
23.08.2001 | 1.16 | 0.89 | 0.39 | 50.61 | 45.40 |
Average | 1.73 | 1.73 | 0.97 | 77.19 | 67.40 |
3.3. Sensitivity to Land-Cover Type and Soil Moisture
Latent Heat Flux (W·m−2) | Sensible Heat Flux (W·m−2) | ||
---|---|---|---|
RAMS | soil profile | −29.80 ± 57.45 | 9.23 ± 64.37 |
−10% | −94.79 ± 49.89 | 60.35 ± 79.12 | |
+10% | −15.97 ± 60.64 | −2.25 ± 60.98 | |
CORINE | soil profile | −28.92 ± 56.50 | 23.21 ± 53.56 |
−10% | −95.36 ± 51.46 | 79.64 ± 72.62 | |
+10% | 1.04 ± 62.34 | −11.56 ± 55.27 |
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Claussen, M.; Cox, P.M.; Zeng, X.; Viterbo, P.; Beljaars, A.C.M.; Betts, R.A.; Bolle, H.-J.; Chase, T.; Koster, R. The Global Climate. In Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System; Springer-Verlag: Heidelberg, Germany, 2004; pp. 33–57. [Google Scholar]
- Rummukainen, M.; Bergstrom, S.; Persson, G.; Rodhe, J.; Tjernstrom, M. The Swedish Regional Climate Modelling Programme, SWECLIM: A review. Ambio 2004, 33, 176–182. [Google Scholar]
- Brovkin, V.; Claussen, M.; Driesschaert, E.; Fichefet, T.; Kicklighter, D.; Loutre, M.F.; Matthews, H.D.; Ramankutty, N.; Schaeffer, M.; Sokolov, A. Biogeophysical effects of historical land cover changes simulated by six earth system models of intermediate complexity. Climate Dyn. 2006, 26, 587–600. [Google Scholar] [CrossRef]
- Bathiany, S.; Claussen, M.; Brovkin, V.; Raddatz, T.; Gayler, V. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences 2010, 7, 1383–1399. [Google Scholar] [CrossRef]
- Eastman, J.L.; Coughenour, M.B.; Pielke, R.A. The regional effects of CO2 and landscape change using a coupled plant and meteorological model. Glob. Change Biol. 2001, 7, 797–815. [Google Scholar] [CrossRef]
- Pielke, R.A.; Cotton, W.R.; Walko, R.L.; Tremback, C.J.; Lyons, W.A.; Grasso, L.D.; Nicholls, M.E.; Moran, M.D.; Wesley, D.A.; Lee, T.J.; et al. A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys. 1992, 49, 69–91. [Google Scholar] [CrossRef]
- Cox, R.; Bauer, B.L.; Smith, T. A mesoscale model intercomparison. Bull. Amer. Meteorol. Soc. 1998, 79, 265–283. [Google Scholar] [CrossRef]
- ENVIRON International Corporation; Mission Research Corporation. MM5/RAMS Fine Grid Meteorological Modelling for September 8–11, 1993 Ozone Episode; TNRCC Report; Texas Natural Resources Conservation Commission: Austin, TX, USA, 2001. Available online: www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/mm/MM5-RAMS-FineGridMetModeling.pdf (accessed on 27 October 2012).
- Taylor, C.M.; Harding, R.J.; Pielke, R.A.; Vidale, P.L.; Walko, R.L.; Pomeroy, J.W. Snow breezes in the boreal forest. J. Geophys. Res. 1998, 103, 23087–23101. [Google Scholar]
- Melas, D.; Persson, T.; de Bruin, H.; Gryning, S.-E.; Batchvarova, E.; Zerefos, C. Numerical model simulations of boundary-layer dynamics during winter conditions. Theor. Appl. Climatol. 2001, 70, 105–116. [Google Scholar] [CrossRef]
- Savijärvi, H.; Amnell, T. High resolution flight observations and numerical simulations: Horizontal variability in the wintertime boreal boundary layer. Theor. Appl. Climatol. 2001, 70, 245–252. [Google Scholar] [CrossRef]
- Bergström, H.; Juuso, N. A study of valley winds using the MIUU meso-scale model. Wind Energy 2006, 9, 109–129. [Google Scholar] [CrossRef]
- Chapin, F.S., III; McGuire, A.D.; Randerson, J.; Pielke, R.A.; Baldocchi, D.; Hobbie, S.E.; Roulet, N.; Eugster, W.; Kasischke, E.; Rastetter, E.B.; et al. Arctic and boreal ecosystems of western North America as components of the climate system. Glob. Change Biol. 2000, 6, 211–223. [Google Scholar] [CrossRef]
- Pielke, R.A.; Uliasz, M. Use of meteorological models as input to regional and mesoscale air quality models—Limitations and strengths—Radiative balance and visual air quality. Atmos. Environ. 1998, 32, 1455–1466. [Google Scholar] [CrossRef]
- Buckley, R.L.; Weber, A.H.; Weber, J.H. Statistical Comparison of Forecast Meteorology with Observations Using the Regional Atmospheric Modeling System. Available online: http://sti.srs.gov/fulltext/ms2001678/ms2001678.html (accessed on 23 September 2011).
- Doty, K. Ad Hoc Meteorological Modeling Group: August 2001 Meeting Summary. Available online: www.epa.gov/scram001/adhoc/sum2001.pdf (accessed on 12 May 2008).
- Sistla, G.; Hao, W.; Ku, J.Y.; Kallos, G.; Zhang, K.S.; Mao, H.T.; Rao, S.T. An operational evaluation of two regional-scale ozone air quality modeling systems over the eastern United State. Bull. Amer. Meteorol. Soc. 2001, 82, 945–964. [Google Scholar] [CrossRef]
- Zhang, K.; Mao, H.; Civerolo, K.; Berman, S.; Ku, J.Y.; Rao, S.T.; Doddridge, B.; Philbrick, C.R.; Clark, R. Numerical investigation of boundary-layer evolution and nocturnal low-level jets: Local versus non-local PBL schemes. Environ. Fluid Mech. 2001, 1, 171–208. [Google Scholar] [CrossRef]
- Fast, J.D. The Relative Role of Local and Regional-Scale Processed on Ozone in Philadelphia. In Proceeding of the Fourth Conference on Atmospheric Chemistry: Urban, Regional, and Global-Scale Impacts of Air Pollutants; American Meteorological Society: Orlando, FL, USA, 2002; pp. 121–124. [Google Scholar]
- Chandrasekar, A.; Philbrick, R.C.; Doddridge, B.; Clark, R.; Georgopoulos, P. A comparison study of RAMS simulations with aircraft, wind profiler, lidar, tethered balloon and RASS data over Philadelphia during a 1999 summer episode. Atmos. Environ. 2003, 37, 4973–4984. [Google Scholar] [CrossRef]
- Atmospheric, Meteorological and Environmental Technologies. Available online: http://atmet.com/ (accessed on 27 October 2012).
- Halldin, S.; Gottschalk, L.; van de Griend, A.A.; Gryning, S.-E.; Heikinheimo, M.; Hogstrom, U.; Jochum, A.; Lundin, L.-C. Science Plan for NOPEX; NOPEX Technical Report No. 12; Uppsala University, NOPEX Central Office: Uppsala, Sweden, 1995; p. 38.
- Halldin, S.; Gottschalk, L.; van de Griend, A.A.; Gryning, S.-E.; Heikinheimo, M.; Hogstrom, U.; Jochum, A.; Lundin, L.-C. NOPEX-A northern hemisphere climate processes land surface experiment. J. Hydrol. 1998, 212–213, 172–187. [Google Scholar]
- Lundin, L.-C.; Halldin, S.; Lindroth, A.; Cienciala, E.; Grelle, A.; Hjelm, P.; Kellner, E.; Lundberg, A.; Mölder, M.; Moren, A.-S.; et al. Continuous long-term measurements of soil-plant-atmosphere variables at a forest site. Agr. Forest Meteorol. 1999, 98–99, 53–73. [Google Scholar]
- Xu, C.-Y.; Seibert, J.; Halldin, S. Regional water balance modelling in the NOPEX area: Development and application of monthly water balance models. J. Hydrol. 1996, 180, 211–236. [Google Scholar] [CrossRef]
- Mölder, M.; Lindroth, A.; Halldin, S. Water vapor, CO2, and temperature profiles in and above a forest—Accuracy assessment of an unattended measurement system. J. Atmos. Ocean. Technol. 2000, 17, 417–425. [Google Scholar] [CrossRef]
- Grelle, A.; Lindroth, A. Eddy-correlation system for long-term monitoring of fluxes of heat, water vapour and CO2. Global Change Biol. 1996, 2, 297–307. [Google Scholar] [CrossRef]
- Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, Ü.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 2000, 30, 113–175. [Google Scholar]
- Gioli, B.; Miglietta, F.; de Martino, B.; Hutjes, R.; Dolman, H.; Lindroth, A.; Schumacher, M.; Sanz, M.; Manca, G.; Peressotti, A.; et al. Comparison between tower and aircraft-based eddy covariance fluxes in five European regions. Agr. Forest Meteorol. 2004, 127, 1–16. [Google Scholar] [CrossRef]
- Crawford, T.L.; Dobosy, R.J. A sensitive fast-response probe to measure turbulence and heat flux from any airplane. Bound. Lay. Meteorol. 1992, 59, 257–278. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 1974, 31, 1791–1806. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 1982, 20, 851–875. [Google Scholar] [CrossRef]
- Helfand, H.M.; Labraga, J.C. Design of a nonsingular level 2.5 second-order closure model for the prediction of atmospheric turbulence. J. Atmos. Sci. 1988, 45, 113–132. [Google Scholar] [CrossRef]
- Walko, R.L.; Band, L.E.; Baron, J.; Kittel, T.G.F.; Lammers, R.; Lee, T.J.; Ojima, D.S.; Pielke, R.A.; Taylor, C.; Tague, C.; Tremback, C.J.; Vidale, P.L. Coupled atmosphere-biophysics-hydrology models for environmental modeling. J. Appl. Meteor. 2000, 39, 931–944. [Google Scholar] [CrossRef]
- European Centre for Medium-Range Weather Forecasts. Available online: http://www.ecmwf.int/ (accessed on 27 October 2012).
- Uppala, S.M.; Kеllberg, P.W.; Simmons, A.J.; Andrae, U.; da Costa Bechtold, V.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Chen, C.; Cotton, W.R. A one-dimensional simulation of the stratocumulus-capped mixed layer. Bound. Lay. Meteorol. 1983, 25, 289–321. [Google Scholar] [CrossRef]
- Klemp, J.B.; Wilhelmson, R.B. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci. 1978, 35, 1070–1096. [Google Scholar] [CrossRef]
- Castelli, S.T.; Morelli, S.; Anfossi, D.; Carvalho, J.; Zauli Sajani, S. Intercomparison of two models, ETA and RAMS, with TRACT field campaign data. Environ. Fluid Dynam. 2004, 4, 157–196. [Google Scholar]
- Tolk, L.F.; Peters, W.; Meesters, A.G.C.A.; Groenendijk, M.; Vermeulen, A.T.; Steeneveld, G.J.; Dolman, A.J. Modelling regional scale surface fluxes, meteorology and CO2 mixing ratios for the Cabauw tower in the Netherlands. Biogeosciences 2009, 6, 2265–2280. [Google Scholar] [CrossRef]
- Shashkov, A.; Higuchi, K.; Chan, D. Aircraft vertical profiling of variation of CO2 over a Canadian boreal forest site: A role of advection in the changes in the atmospheric boundary layer CO2 content. Tellus 2007, 59B, 234–243. [Google Scholar]
- Gryning, S.-E.; Batchvarova, E. Regional heat flux over the NOPEX area estimated from the evolution of the mixed-layer. Agr. Forest Meteorol. 1999. [Google Scholar] [CrossRef]
- Carvalho, J.; Anfossi, D.; Trini Castelli, S.; Degrazia, G. Application of a model system for the study of transport and diffusion in complex terrain to the TRACT experiment. Atmos. Environ. 2002, 36, 1147–1161. [Google Scholar] [CrossRef]
- Denning, A.S.; Nicholls, M.; Prihodko, L.; Baker, I.; Vidale, P.L.; Davis, K.; Bakwin, P. Simulated variations in atmospheric CO2 over a Wisconsin forest using a coupled ecosystem-atmosphere model. Glob. Change Biol. 2003, 9, 1241–1250. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kvon, E.V.; Tuulik, J.; Mölder, M.; Lindroth, A. Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS) Simulations with Aircraft and Tower Observations. Atmosphere 2012, 3, 537-556. https://doi.org/10.3390/atmos3040537
Kvon EV, Tuulik J, Mölder M, Lindroth A. Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS) Simulations with Aircraft and Tower Observations. Atmosphere. 2012; 3(4):537-556. https://doi.org/10.3390/atmos3040537
Chicago/Turabian StyleKvon, Elena V., Janno Tuulik, Meelis Mölder, and Anders Lindroth. 2012. "Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS) Simulations with Aircraft and Tower Observations" Atmosphere 3, no. 4: 537-556. https://doi.org/10.3390/atmos3040537
APA StyleKvon, E. V., Tuulik, J., Mölder, M., & Lindroth, A. (2012). Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS) Simulations with Aircraft and Tower Observations. Atmosphere, 3(4), 537-556. https://doi.org/10.3390/atmos3040537