Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report
Abstract
:1. Introduction
1.1. Overview
1.2. A Key Achievement
1.3. Identified Pathways
1.4. Model Comparisons and Process Studies
1.5. Organization of the Action
- Mass-flux based approaches (Section 2.1)
- Non-Mass Flux based approaches (Section 2.2)
- High-Resolution Limit (Section 2.3)
- Physics and Observations (Section 2.4)
- Critical analysis of the strengths and weakness of the state-of-the-art convection parameterizations
- Development of conceptual models of atmospheric convection by exploiting methodologies from theoretical physics and applied mathematics
- Proposal of a generalized parameterization scheme applicable to all conceivable states of the atmosphere
- Defining suitable validation methods for convection parameterization against explicit modeling (CRM and LES) as well as against observations, especially satellite data
2. Tasks and Questions
2.1. Mass-Flux Based Approaches
2.1.1. Overview
T1.1: Review of Current State-of-the-Art of Closure Hypothesis
T1.2: Critical Review of the Concept of Convective Quasi-Equilibrium
Q1.2.1: How Can the Convective Quasi-Equilibrium Principle be Generalized to a System Subject to Time-Dependent Forcing? How Can a Memory Effect (e.g., from a Convection Event the Day before) Possibly be Incorporated into Quasi-Equilibrium Principle?
Q1.2.2: Are There Theoretical Formulation Available that could be Used to Directly Test Convective Quasi-Equilibrium (e.g., Based on Population Dynamics)?
T1.3: Proposal for a General Framework of Parameterization Closure
Q1.3.1: Is It Feasible to Re-Formulate the Closure Problem as that of the Lower Boundary Condition of the System? Is It Desirable to Do So?
Q1.3.2: How does the Fundamentally Chaotic and Turbulent Nature of Atmospheric Flows Affect the Closure of Parameterizations? Can the Quasi-Equilibrium still be Applied for These Flows?
T1.4: Review on Current State–of–the–Art of Entrainment-Detrainment Formulations
T1.5: Critical Review of Existing Methods for Estimating Entrainment and Detrainment Rates from CRM and LES
Q1.5.1: From a Critical Review of Existing Methods for Estimating Entrainment and Detrainment Rates from CRM and LES, What are the Advantages and Disadvantages of the Various Approaches?
T1.6: Proposal and Recommendation for the Entrainment-Detrainment Problem
- (i)
- Critical fractional mixing ratio originally introduced in a context of a buoyancy sorting theory [70]: the critical fraction is defined as the mixing fraction between convective and environmental air that leads to neutral buoyancy. Mixing with less or more environmental air from this critical fraction leads to positive or negative buoyancy respectively. This division line is expected to play an important role in entrainment–detrainment processes.
- (ii)
Q1.6.1: What is the Precise Physical Meaning of Entrainment and Detrainment?
Q1.6.2: If They Provide Nothing Other Than Artificial Tuning Parameters, How could they be Replaced with More Physically-Based Quantities?
Q1.7: How Strong and How Robust is the Observational Evidence for Self-Organized Criticality of Atmospheric Convection?
Q1.8: Can a General Unified Formulation of Convection Parameterization be Constructed on the Basis of Mass Fluxes?
- (i)
- entrainment–detrainment hypothesis (cf. Section 2.1.1, T1.5, Q1.5.1, T1.6, Q1.6.1, Q1.6.2)
- (ii)
- environment hypothesis: the hypothesis that all of the subgrid components (convection) are exclusively surrounded by a special component called the “environment”
- (iii)
- asymptotic limit of vanishing fractional areas for convection, such that the “environment” occupies almost the whole grid–box domain.
2.2. Non-Mass Flux Based Approaches: New Theoretical Ideas
Q2.0: Does the Hamiltonian Framework Help to Develop a General Theory for Statistical Cumulus Dynamics?
T2.1: Review of Similarity Theories
Q2.1.1: What are the Key Non-Dimensional Parameters that Characterize the Microphysical Processes?
Q2.1.2: How can the Correlation be Determined between the Microphysical (e.g., Precipitation Rate) and Dynamical Variables (e.g., Plume Vertical Velocity)?
Q2.1.3: How should a Fully Consistent Energy Budget be Formulated in the Presence of Precipitation Processes?
T2.2: Review of Probability-Density Based Approaches
Q2.2.1: How can Current Probability-Density Based Approaches be Generalized?
Q2.2.2: How can Convective Processes be Incorporated into Probability-Based Cloud Parameterizations? Can Suitable Extensions of the Approach be Made Consistently?
Q2.2.3: Is the Moment Expansion a Good Approximation for Determining the Time-Evolution of the Probability Density? What is the Limit of This Approach?
Q2.2.4: Could the Fokker-Planck Equation Provide a Useful General Framework?
Q2.2.5: How can Microphysics be Included Properly into the Probability-Density Description?
T2.3: Assessments of Possibilities for Statistical Cumulus Dynamics
Q2.3.1: How can a Standard, “Non-Interacting”, Statistical Description of Plumes be Generalized to Account for Plume Interactions?
Q2.3.2: How can Plume-Plume Interactions and Their Role in Convection Organization be Determined?
Q2.3.3: How can the Transient, Life-Cycle Behavior of Plumes be Taken Into Account for the Statistical Plume Dynamics?
Q2.3.4: How can a Statistical Description be Formulated for the Two-Way Feedbacks between Convective Elements and Their “Large-Scale” Environment?
Q2.3.5: How can Statistical Plume Dynamics Best be Described Within a Hamiltonian Framework?
T2.4: Proposal for a Consistent Subgrid-Scale Convection Formulation
- (1)
- Self-consistency
- (2)
- Consistency with physics
2.3. High-Resolution Limit
T3.1: Review of State-of-the-Art of High-Resolution Model Parameterization
T3.2: Analysis Based on Asymptotic Expansion Approach
T3.3: Proposal and Recommendation for High-Resolution Model Parameterization
2.3.1. More General and Flexible Parameterization at Higher Resolutions
- (1)
- Start from the basic laws of physics (and chemistry: cf. T4.3)
- (2)
- Perform a systematic and logically consistent deduction from the above (cf. T2.4)
- (3)
- Sometimes it may be necessary to introduce certain approximations and hypotheses. These must be listed carefully so that you would know later where you introduced them and why.
Q3.4: High–Resolution Limit: Questions
Q3.4.1: Which Scales of Motion should be Parameterized and under Which Circumstances?
- (i)
- Any process in question cannot be characterized by a single scale (or wavenumber), but is more likely to consist of a continuous spectrum. In general, a method for extracting a particular process of concern is not trivial.
- (ii)
- Whether a process is well resolved or not cannot be simply decided by a given grid size. In order for a spatial scale to be adequately resolved, usually several grid points are required. As a corollary of this, and of point (i), the grid size required depends on both the type of process under consideration and the numerics.
- (iii)
- Thus the question of whether a process is resolved or not is not a simple dichotomic question.
Q3.4.2: How can Convection Parameterization be Made Resolution-Independent in order to Avoid Double-Counting of Energy-Containing Scales of Motion or Loss of Particular Scales?
Q3.4.3: What is the Degree of Complexity of Physics Required at a Given Horizontal Resolution?
2.4. Physics and Observations
T4.1: Review of Subgrid-Scale Microphysical Parameterizations
2.4.1. Further Processes to be Incorporated into Convection Parameterizations
2.4.1.1. Downdrafts
2.4.1.2. Cold Pools
2.4.1.3. Topography
2.4.2. Link to the Downscaling Problem
T4.2: Proposal and Recommendation on Observational Validations
T4.3: Proposal and Recommendation for a Parameterization with Unified Physics
Q4.3.1: How can a Microphysical Formulation (Which is by Itself a Parameterization) be Made Resolution Dependent?
Q4.3.2: Can Detailed Microphysics with Its Sensitivity to Environmental Aerosols be Incorporated into a Mass-Flux Convection Parameterization? Are the Current Approaches Self-Consistent of Not? If Not, How can It be Achieved?
2.4.3. How Can Observations Be Used for Convection Parameterization Studies?
3. Conclusions: Retrospective and Perspective
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix: Derivation of the Result for T3.2
References
- Plant, R.S.; Yano, J.-I. Parameterization of Atmospheric Convection; Imperial College Press: London, UK, 2014; Volumes I and II, in press. [Google Scholar]
- McFarlane, N. Parameterizations: Representing key processes in climate models without resolving them. WIREs Clim. Chang. 2011, 2, 482–497. [Google Scholar] [CrossRef]
- Arakawa, A. The cumulus parameterization problem: Past, present, and future. J. Clim. 2004, 17, 2493–2525. [Google Scholar] [CrossRef]
- Yano, J.-I.; Vlad, M.; Derbyshire, S.H.; Geleyn, J.-F.; Kober, K. Generalization, consistency, and unification in the parameterization problem. Bull. Amer. Meteor. Soc. 2014, 95, 619–622. [Google Scholar] [CrossRef]
- Lesieur, M. Turbulence in Fluids; Martinus Nijhoff Publisher: Dordrecht, Netherlands, 1987. [Google Scholar]
- Orszag, S.A. Analytical theories of turbulence. J. Fluid Mech. 1970, 41, 363–386. [Google Scholar] [CrossRef]
- Guichard, F.; Petch, J.C.; Redelsperger, J.L.; Bechtold, P.; Chaboureau, J.-P.; Cheinet, S.; Grabowski, W.; Grenier, H.; Jones, C.G.; Köhler, M.; et al. Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. R. Meteor. Soc. 2004, 604, 3139–3172. [Google Scholar] [CrossRef]
- Lenderink, G.; Siebesma, A.P.; Cheinet, S.; Irons, S.; Jones, C.G.; Marquet, P.; Müller, F.; Olmeda, D.; Calvo, J.; Sánchez, E.; et al. The diurnal cycle of shallow cumulus clouds over land: A single-column model intercomparison study. Quart. J. R. Meteor. Soc. 2004, 130, 3339–3364. [Google Scholar] [CrossRef]
- Yano, J.-I.; Plant, R.S. Coupling of shallow and deep convection: A key missing element in atmospheric modelling. J. Atmos. Sci. 2012, 69, 3463–3470. [Google Scholar] [CrossRef]
- Bechtold, P.; Semane, N.; Lopez, P.; Chaboureau, J.-P.; Beljaars, A.; Bormann, N. Representing equilibrium and non-equilibrium convection in large-scale models. J. Atmos. Sci. 2014, 71, 734–753. [Google Scholar] [CrossRef]
- Yano, J.-I.; Graf, H.-F.; Spineanu, F. Theoretical and operational implications of atmospheric convective organization. Bull. Am. Meteor. Soc. 2012, 93, ES39–ES41. [Google Scholar] [CrossRef]
- Yano, J.-I. Formulation structure of the mass–flux convection parameterization. Dyn. Atmos. Ocean 2014, 67, 1–28. [Google Scholar] [CrossRef]
- Yano, J.-I. Formulation of the mass–flux convection parameterization. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume I, in press. [Google Scholar]
- Marquet, P. Definition of a moist entropy potential temperature: Application to FIRE-I data flights. Quart. J. R. Meteor. Soc. 2011, 137, 768–791. [Google Scholar] [CrossRef]
- Marquet, P. On the computation of moist-air specific thermal enthalpy. Quart. J. R. Meteor. Soc. 2014. [Google Scholar] [CrossRef]
- Marquet, P.; Geleyn, J.-F. Formulations of moist thermodynamics for atmospheric modelling. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume II, in press. [Google Scholar]
- Donner, L.J. A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci. 1993, 50, 889–906. [Google Scholar] [CrossRef]
- Yano, J.-I. Convective vertical velocity. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume I, in press. [Google Scholar]
- Yano, J.-I. Interactive comment on “Simulating deep convection with a shallow convection scheme” by Hohenegger, C., and Bretherton, C. S., On PBL-based closure. Atmos. Chem. Phys. Discuss. 2011, 11, C2411–C2425. [Google Scholar]
- Yano, J.I.; Bister, M.; Fuchs, Z.; Gerard, L.; Phillips, V.; Barkidija, S.; Piriou, J.M. Phenomenology of convection-parameterization closure. Atmos. Phys. Chem. 2013, 13, 4111–4131. [Google Scholar] [CrossRef]
- Del Genio, A.D.; Wu, J. The role of entrainment in the diurnal cycle of continental convection. J. Clim. 2010, 23, 2722–2738. [Google Scholar] [CrossRef]
- Stratton, R.A.; Stirling, A. Improving the diurnal cycle of convection in GCMs. Quart. J. R. Meteor. Soc. 2012, 138, 1121–1134. [Google Scholar] [CrossRef]
- Raymond, D.J. Regulation of moist convection over the warm tropical oceans. J. Atmos. Sci. 1995, 52, 3945–3959. [Google Scholar] [CrossRef]
- Zhang, G.J. Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res. 2002. [Google Scholar] [CrossRef]
- Zhang, G.J. The concept of convective quasi–equilibrium in the tropical western Pacific: Comparison with midlatitude continental environment. J. Geophys. Res. 2003. [Google Scholar] [CrossRef]
- Mapes, B.E. Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci. 2000, 57, 1515–1535. [Google Scholar] [CrossRef]
- Bretherton, C.S.; McCaa, J.R.; Grenier, H. A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Weather Rev. 2004, 132, 864–882. [Google Scholar] [CrossRef]
- Hohenegger, C.; Bretherton, C.S. Simulating deep convection with a shallow convection scheme. Atmos. Chem. Phys. 2011, 11, 10389–10406. [Google Scholar] [CrossRef]
- Donner, L.J.; Phillips, V.T. Boundary layer control on convective available potential energy: Implications for cumulus parameterization. J. Geophys. Res. 2003. [Google Scholar] [CrossRef]
- Rio, C.; Hourdin, F.; Grandpeix, J.-Y.; Lafore, J.-P. Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett. 2009. [Google Scholar] [CrossRef]
- Rio, C.; Hourdin, F.; Grandpeix, J.-Y.; Hourdin, H.; Guichard, F.; Couvreux, F.; Lafore, J.-P.; Fridlind, A.; Mrowiec, A.; Roehrig, R.; et al. Control of deep convection by sub-cloud lifting processes: The ALP closure in the LMDD5B general circulation model. Clim. Dyn. 2012, 40, 2271–2292. [Google Scholar] [CrossRef]
- Mapes, B.; Neale, R. Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst. 2011. [Google Scholar] [CrossRef]
- Birch, C.E.; Parker, D.J.; O’Leary, A.; Marsham, J.H.; Taylor, C.M.; Harris, P.P.; Lister, G.M.S. Impact of soil moisture and convectively generated waves on the initiation of a West African mesoscale convective system. Quart. J. R. Meteor. Soc. 2013, 139, 1712–1730. [Google Scholar] [CrossRef] [Green Version]
- Bechtold, P.; ECMWF, Reading, UK. Personal communication, 2014.
- Semane, N.; ECMWF, Reading, UK. Personal communication, 2013.
- De Rooy, W.; KNMI, De Bilt, the Netherlands. Personal communication, 2014.
- Arakawa, A.; Schubert, W.H. Interaction of a cumulus cloud ensemble with the large-scale environment, pt. I. J. Atmos. Sci. 1974, 31, 674–701. [Google Scholar] [CrossRef]
- Yano, J.-I.; Plant, R.S. Convective quasi-equilibrium. Rev. Geophys. 2012, 50, RG4004. [Google Scholar]
- Leith, C.E. Nonlinear normal mode initialization and quasi–geostrophic theory. J. Atmos. Sci. 1980, 37, 958–968. [Google Scholar] [CrossRef]
- Davies, L.; Plant, R.S.; Derbyshire, S.H. Departures from convective equilibrium with a rapidly-varying forcing. Q. J. R. Meteorol. Soc. 2013, 139, 1731–1746. [Google Scholar] [CrossRef]
- Yano, J.-I.; Plant, R.S. Finite departure from convective quasi-equilibrium: Periodic cycle and discharge-recharge mechanism. Quator. J. Roy. Meteor. Soc 2012. [Google Scholar] [CrossRef]
- Plant, R.S.; Yano, J.-I. The energy-cycle analysis of the interactions between shallow and deep atmospheric convection. Dyn. Atmos. Ocean 2013, 64, 27–52. [Google Scholar] [CrossRef]
- Yano, J.-I.; Cheedela, S.K.; Roff, G.L. Towards compressed super–parameterization: Test of NAM–SCA under single–column GCM configurations. Atmos. Chem. Phys. Discuss. 2012, 12, 28237–28303. [Google Scholar] [CrossRef]
- Randall, D.A.; Pan, D.-M. Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. In The Representation of Cumulus Convection in Numerical Models; Emanuel, K.A., Raymond, D.J., Eds.; American Meteor Society: Boston, MA, USA, 1993; pp. 137–144. [Google Scholar]
- Pan, D.-M.; Randall, D.A. A cumulus parameterization with prognostic closure. Quart. J. R. Meteor. Soc. 1998, 124, 949–981. [Google Scholar]
- Chen, D.H.; Bougeault, P. A simple prognostic closure assumption to deep convective parameterization. Acta Meteorol. Sin. 1992, 7, 1–18. [Google Scholar]
- Wagner, T.M.; Graf, H.F. An ensemble cumulus convection parameterisation with explicit cloud treatment. J. Atmos. Sci. 2010, 67, 3854–3869. [Google Scholar] [CrossRef]
- Plant, R.S.; Yano, J.-I. Comment on “An ensemble cumulus convection parameterisation with explicit cloud treatment” by T.M. Wagner and H.-F. Graf. J. Atmos. Sci. 2011, 68, 1541–1544. [Google Scholar] [CrossRef]
- Kuo, H.L. Further studies of the parameterization of the influence of cumulus convection on the large–scale flow. J. Atmos. Sci. 1974, 31, 1232–1240. [Google Scholar] [CrossRef]
- Yano, J.-I.; Plant, R. S. 2014: Closure. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume I, in press. [Google Scholar]
- Plant, R.S.; Bengtsson, L. Stochastic aspects of convection parameterization. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume II, in press. [Google Scholar]
- Grant, A.L.M. Cloud–base fluxes in the cumulus–capped boundary layer. Quart. J. R. Meteor. Soc. 2001, 127, 407–421. [Google Scholar] [CrossRef]
- Neggers, R.A.J.; Siebesma, A.P.; Lenderink, G.; Holtslag, A.A.M. An evaluation of mass flux closures for diurnal cycles of shallow cumulus. Mon. Wea. Rev. 2004, 132, 2525–2538. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Miranda, P.M.A.; Siebesma, A.P.; Teixeira, J. An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Quart. J. R. Meteor. Soc. 2004, 130, 3365–3383. [Google Scholar] [CrossRef]
- Penland, C. A stochastic approach to nonlinear dynamics: A review. Bull. Am. Meteor. Soc. 2003, 84, 925–925. [Google Scholar] [CrossRef]
- Melbourne, I.; Stuart, A. A note on diffusion limits of chaotic skew product flows. Nonlinearity 2011, 24, 1361–1367. [Google Scholar] [CrossRef]
- Gottwald, G.A.; Melbourne, I. Homogenization for deterministic maps and multiplicative noise. Proc. R. Soc. A 2013. [Google Scholar] [CrossRef]
- De Rooy, W.C.; Bechtold, P.; Fröhlich, K.; Hohenegger, C.; Jonker, H.; Mironov, D.; Siebesma, A.P.; Teixeira, J.; Yano, J.-I. Entrainment and detrainment in cumulus convection: An overview. Quart. J. R. Meteor. Soc. 2013, 139, 1–19. [Google Scholar] [CrossRef]
- Romps, D.M. A direct measurement of entrainment. J. Atmos. Sci. 2010, 67, 1908–1927. [Google Scholar] [CrossRef]
- Dawe, J.T.; Austin, P.H. The influence of the cloud shell on tracer budget measurements of LES cloud entrainment. J. Atmos. Sci. 2011, 68, 2909–2920. [Google Scholar] [CrossRef]
- Siebesma, A.P.; Cuijpers, J.W.M. Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci. 1995, 52, 650–666. [Google Scholar] [CrossRef]
- Swann, H. Evaluation of the mass–flux approach to parameterizing deep convection. Quart. J. R. Meteor. Soc. 2001, 127, 1239–1260. [Google Scholar] [CrossRef]
- Yano, J.-I.; Guichard, F.; Lafore, J.-P.; Redelsperger, J.-L.; Bechtold, P. Estimations of massfluxes for cumulus parameterizations from high-resolution spatial data. J. Atmos. Sci. 2004, 61, 829–842. [Google Scholar] [CrossRef]
- Yano, J.-I.; Baizig, H. Single SCA-plume dynamics. Dyn. Atmos. Ocean. 2012, 58, 62–94. [Google Scholar] [CrossRef]
- Korczyka, P.M.; Kowalewskia, T.A.; Malinowski, S.P. Turbulent mixing of clouds with the environment: Small scale two phase evaporating flow investigated in a laboratory by particle image velocimetry. Physica D 2011, 241, 288–296. [Google Scholar] [CrossRef]
- Diwan, S.S.; Prasanth, P.; Sreenivas, K.R.; Deshpande, S.M.; Narasimha, R. Cumulus-type flows in the laboratory and on the computer: Simulating cloud form, evolution and large-scale structure. Bull. Am. Meteor. Soc. 2014. [Google Scholar] [CrossRef]
- Squires, P. The spatial variation of liquid water content and droplet concentration in cumuli. Tellus 1958, 10, 372–380. [Google Scholar] [CrossRef]
- Squires, P. Penetrative downdraughts in cumuli. Tellus 1958, 10, 381–389. [Google Scholar] [CrossRef]
- Paluch, I.R. The entrainment mechanism of Colorado cumuli. J. Atmos. Sci. 1979, 36, 2467–2478. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.L. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef]
- Bechtold, P.; Köhler, M.; Jung, T.; Doblas-Reyes, F.; Leutbecher, M.; Rodwell, M.; Vitart, F.; Balsamo, G. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. R. Meteor. Soc. 2008, 134, 1337–1351. [Google Scholar] [CrossRef]
- Derbyshire, S.H.; Maidens, A.V.; Milton, S.F.; Stratton, R.A.; Willett, M.R. Adaptive detrainment in a convective parameterization. Quart. J. R. Meteor. Soc. 2011, 137, 1856–1871. [Google Scholar] [CrossRef]
- De Rooy, W.C.; Siebesma, A.P. A simple parameterization for detrainment in shallow cumulus. Mon. Wea. Rev. 2008, 136, 560–576. [Google Scholar] [CrossRef]
- Böing, S.J.; Siebesma, A.P.; Korpershoek, J.D.; Jonker, H.J.J. Detrainment in deep convection. Geophys. Res. Lett. 2012. [Google Scholar] [CrossRef]
- De Rooy, W.C.; Siebesma, A.P. Analytical expressions for entrainment and detrainment in cumulus convection. Quart. J. R. Meteor. Soc. 2010, 136, 1216–1227. [Google Scholar]
- Neggers, R.A.J. A dual mass flux framework for boundary layer convection. Part II: Clouds. J. Atmos. Sci. 2009, 66, 1489–1506. [Google Scholar] [CrossRef]
- Morton, B.R.; Taylor, G.; Turner, J.S. Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Meteor. Soc. 1956, 234, 1–33. [Google Scholar] [CrossRef]
- Morton, B.R. Discreet dry convective entities: II Thermals and deflected jets. In The Physics and Parameterization of Moist Atmospheric Convection; Smith, R.K., Ed.; NATO ASI, Kloster Seeon, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 175–210. [Google Scholar]
- Yano, J.-I. Basic convective element: Bubble or plume?: A historical review. Atmos. Phys. Chem. Dis. 2014, 14, 3337–3359. [Google Scholar] [CrossRef]
- Squires, P.; Turner, J.S. An entraining jet model for cumulo–nimbus updraught. Tellus 1962, 16, 422–434. [Google Scholar] [CrossRef]
- Bringi, V.N.; Knupp, K.; Detwiler, A.; Liu, L.; Caylor, I.J.; Black, R.A. Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev. 1997, 125, 2131–2160. [Google Scholar] [CrossRef]
- Jonker, H.; His Collaborators; University of Deft, Deft, the Netherlands. Personal communication, 2009.
- Heus, T.; Jonker, H.J.J.; van den Akker, H.E.A.; Griffith, E.J.; Koutek, M.; Post, F.H. A statistical approach to the life cycle analysis of cumulus clouds selected in a vitual reality environment. J. Geophys. Res. 2009. [Google Scholar] [CrossRef]
- Levine, J. Spherical vortex theory of bubble-like motion in cumulus clouds. J. Meteorol. 1959, 16, 653–662. [Google Scholar] [CrossRef]
- Gerard, L.; Geleyn, J.-F. Evolution of a subgrid deep convection parameterization in a limited–area model with increasing resolution. Quart. J. R. Meteor. Soc. 2005, 131, 2293–2312. [Google Scholar] [CrossRef]
- Stanley, H.E. Introduction to Phase Transitions and Critical Phenomena; Oxford University Press: London, UK, 1971. [Google Scholar]
- Vattay, G.; Harnos, A. Scaling behavior in daily air humidity fluctuations. Phys. Rev. Lett. 1994, 73, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Peters, O.; Hertlein, C.; Christensen, K. A complexity view of rainfall. Phys. Rev. Lett. 2002, 88, 018701. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.E.J. Power laws, Pareto distributions and Zipf’s law. Cont. Phys. 2005, 46, 323–351. [Google Scholar] [CrossRef]
- Peters, O.; Neelin, J.D. Critical phenomena in atmospheric precipitation. Nat. Phys 2006, 2, 393–396. [Google Scholar] [CrossRef]
- Peters, O.; Deluca, A.; Corral, A.; Neelin, J.D.; Holloway, C.E. Universality of rain event size distributions. J. Stat. Mech. 2010, 11, P11030. [Google Scholar] [CrossRef]
- Neelin, J. D.; Peters, O.; Lin, J. W.-B.; Hales, K.; Holloway, C. E. Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Phil. Trans. R. Soc. A 2008, 366, 2581–2604. [Google Scholar] [CrossRef] [PubMed]
- Peters, O.; Neelin, J.D.; Nesbitt, S.W. Mesoscale convective systems and critical clusters. J. Atmos. Sci. 2009, 66, 2913–2924. [Google Scholar] [CrossRef]
- Wood, R.; Field, P.R. The distribution of cloud horizontal sizes. J. Clim. 2011, 24, 4800–4816. [Google Scholar] [CrossRef]
- Muller, C.J.; Back, L.E.; O’Gorman, P.A.; Emanuel, K.A. A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett. 2009. [Google Scholar] [CrossRef]
- Krueger, S.; University of Utah, Salt Lake, UT, USA. Personal communication, 2014.
- Seo, E.-K.; Sohn, B.-J.; Liu, G. How TRMM precipitation radar and microwave imager retrieved rain rates differ. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Yano, J.-I.; Liu, C.; Moncrieff, M.W. Atmospheric convective organization: Homeostasis or self-organized criticality? J. Atmos. Sci. 2012, 69, 3449–3462. [Google Scholar] [CrossRef]
- Raymond, D.J. Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc. 2000, 126, 889–898. [Google Scholar] [CrossRef]
- Peters, O.; Pruessner, G. Tuning- and Order Parameter in the SOC Ensemble. arXiv:0912.2305v1. 2009. [Google Scholar]
- Yano, J.-I.; Redelsperger, J.-L.; Guichard, F.; Bechtold, P. Mode decomposition as a methodology for developing convective-scale representations in global models. Quart. J. R. Meteor. Soc. 2005, 131, 2313–2336. [Google Scholar] [CrossRef]
- Yano, J.-I.; Benard, P.; Couvreux, F.; Lahellec, A. NAM–SCA: Nonhydrostatic Anelastic Model under Segmentally–Constant Approximation. Mon. Wea. Rev. 2010, 138, 1957–1974. [Google Scholar] [CrossRef]
- Yano, J.-I. Mass–flux subgrid–scale parameterization in analogy with multi–component flows: A formulation towards scale independence. Geosci. Model Dev. 2012, 5, 1425–2440. [Google Scholar] [CrossRef]
- Arakawa, A.; Wu, C.-M. A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci. 2013, 70, 1977–1992. [Google Scholar] [CrossRef]
- Arakawa, A.; Jung, J.-H.; Wu, C.-M. Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys. 2011, 11, 3731–3742. [Google Scholar] [CrossRef]
- Bihlo, A. A Tutorial on Hamiltonian Mechanics. COST Document. 2011. Available online: http://convection.zmaw.de/fileadmin/user_upload/convection/Convection/COST_Documents/Search_for_New_Frameworks/A_Tutorial_on_Hamiltonian_Mechanics.pdf (accessed on 4 December 2014).
- Cardoso-Bihlo, E.; Popovych, R.O. Invariant Parameterization Schemes. COST Document. 2012. http://convection.zmaw.de/fileadmin/user_upload/convection/Convection/COST_Documents/Search_for_New_Frameworks/Invariant_Parameterization_Schemes.pdf (accessed on 4 December 2014).
- Popovych, R.O.; Bihlo, A. Symmetry perserving parameterization schemes. J. Math. Phycs. 2012, 53, 073102. [Google Scholar] [CrossRef]
- Bihlo, A.; Bluman, G. Conservative parameterization schemes. J. Math. Phys. 2013, 54, 083101. [Google Scholar] [CrossRef]
- Bihlo, A.; Dos Santos Cardoso-Bihlo, E.M.; Popovych, R.O. Invariant parameterization and turbulence modeling on the beta-plane. Physica D 2014, 269, 48–62. [Google Scholar] [CrossRef]
- Grant, A.L.M. Cumulus convection as a turbulent flow. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume II, in press. [Google Scholar]
- Grant, A.L.M. Precipitating convection in cold air: Virtual potential temperature structure. Quart. J. R. Meteor. Soc. 2007, 133, 25–36. [Google Scholar] [CrossRef]
- Seifert, A.; Stevens, B. Microphysical scaling relations in a kinematic model of isolated shallow cumulus clouds. J. Atmos. Sci. 2010, 67, 1575–1590. [Google Scholar] [CrossRef]
- Seifert, A.; Zänger, G. Scaling relations in warm-rain orographic precipitation. Meteorol. Z. 2010, 19, 417–426. [Google Scholar] [CrossRef]
- Stevens, B.; Seifert, A. Understanding microphysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Met. Soc. Jpn. 2008, 86A, 143–162. [Google Scholar] [CrossRef]
- Yano, J.-I.; Phillips, V.T.J. Ice–ice collisions: An ice multiplication process in atmospheric clouds. J. Atmos. Sci. 2011, 68, 322–333. [Google Scholar] [CrossRef]
- Chandrasekahr, S. Hydrodynamic and Hydromagnetic Instability; Oxford University Press: London, UK, 1961. [Google Scholar]
- Marquet, P.; Geleyn, J.-F. On a general definition of the squared Brunt–Väisälä frequency associated with the specific moist entropy potential temperature. Quart. J. R. Meteor. Soc. 2013, 139, 85–100. [Google Scholar] [CrossRef]
- Durran, D.R.; Klemp, J.B. On the effects of moisture on the Brunt-Vaisala frequency. J. Atmos. Sci. 1982, 39, 2152–2158. [Google Scholar] [CrossRef]
- Machulskaya, E. Clouds and convection as subgrid–scale distributions. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume II, in press. [Google Scholar]
- Bony, S.; Emanuel, K.A. A parameterization of the cloudness associated with cumulus convection: Evaluation using TOGA COARE data. J. Atmos. Sci. 2001, 58, 3158–3183. [Google Scholar] [CrossRef]
- Tompkins, A.M. A prognostic parameterization for the subgrid–scale variability of water vapor and clouds in large–scale models and its use to diagnose cloud cover. J. Atmos. Sci. 2002, 59, 1917–1942. [Google Scholar] [CrossRef]
- Larson, V.E.; Wood, R.; Field, P.R.; Goraz, J.-C.; Haar, T.H.V.; Cotton, W.R. Systematic biases in the microphysics and thermodynamics of numerical models that ignore subgrid–scale variability. J. Atmos. Sci. 2002, 58, 1117–1128. [Google Scholar]
- Wilson, D.R.; Bushell, A.C.; Kerr-Munslow, A.M.; Price, J.D.; Morcrette, C.J. PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. R. Meteor. Soc. 2008, 134, 2093–2107. [Google Scholar] [CrossRef]
- Klein, S.A.; Pincus, R.; Hannay, C.; Xu, K.-M. How might a statistical cloud scheme be coupled to a mass–flux convection scheme? J. Geophys. Res. 2005, 110, D15S06. [Google Scholar]
- Golaz, J.-C.; Larson, V.E.; Cotton, W.R. A PDF–based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci. 2002, 59, 3540–3551. [Google Scholar] [CrossRef]
- Plant, R. S. Statistical properties of cloud lifecycles in cloud-resolving models. Atmos. Chem. Phys. 2009, 9, 2195–2205. [Google Scholar] [CrossRef]
- Sakradzija, M.; Seifert, A.; Heus, T. Fluctuations in a quasi-stationary shallow cumulus cloud ensemble, Nonlin. Processes Geophys. Discuss. 2014, 1, 1223–1282. [Google Scholar] [CrossRef]
- Marquet, P. On the definition of a moist-air potential vorticity. Quart. J. R. Meteor. Soc. 2014, 140, 917–929. [Google Scholar] [CrossRef]
- Gerard, L. Model resolution issues and new approaches in the grey zone. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume II, in press. [Google Scholar]
- Bechtold, P.; ECMWF, Reading, UK. Personal communication, 2014.
- Bengtsson, L.; Körnich, H.; Källén, E.; Svensson, G. Large-scale dynamical response to subgrid scale organization provided by cellular automata. J. Atmos. Sci. 2011, 68, 3132–3144. [Google Scholar] [CrossRef]
- Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.-F. A stochastic parameterization using cellular automata. Quart. J. R. Meteor. Soc. 2013, 139, 1533–1543. [Google Scholar] [CrossRef]
- Gerard, L. An integrated package for subgrid convection, clouds and precipitation compatible with the meso-gamma scales. Quart. J. R. Meteor. Soc. 2007, 133, 711–730. [Google Scholar] [CrossRef]
- Gerard, L.; Piriou, J.-M.; Brožková, R.; Geleyn, J.-F.; Banciu, D. Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model. Mon. Weather Rev. 2009, 137, 3960–3977. [Google Scholar] [CrossRef]
- Plant, R.S.; Craig, G.C. A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci. 2008, 65, 87–105. [Google Scholar] [CrossRef]
- Machulskaya, E.; Mironov, D. Implementation of TKE–Scalar Variance Mixing Scheme into COSMO. Available online: http://www.cosmo-model.org (accessed on 4 December 2014).
- Mironov, D. Turbulence in the lower troposphere: Second-order closure and mass-flux modelling frameworks. Lect. Notes. Phys. 2009, 756, 161–221. [Google Scholar]
- Smagorinsky, J. General circulation experiments with the primitive equations. I. The basic equations. Mon. Wea. Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Jaynes, E.T. Probability Theory,The Logic of Science; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Gregory, P.C. Bayesian Logical Data Analysis for the Physical Sciences; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Khain, A.P.; Beheng, K.D.; Heymsfield, A.; Korolev, A.; Krichak, S.O.; Levin, Z.; Pinsky, M.; Phillips, V.; Prabhakaran, T.; Teller, A.; et al. Representation of microphysical processes in cloud–resolving models: Spectral (bin) microphysics vs. bulk–microphysics. Rev. Geophys. 2014. submitted. [Google Scholar]
- Phillips, V.T.J. Microphysics of convective cloud and its treatment in parameterization. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume II, in press. [Google Scholar]
- Khain, A.P.; Lynn, B.; Shpund, J. Simulation of intensity and structure of hurricane Irene: Effects of aerosols, ocean coupling and model resolution. In Proceedings of the 94-th AMS Conference, Atlanta, GA, USA, 2–6 February 2014.
- Lynn, B.H.; Khain, A.P.; Bao, J.W.; Michelson, S.A.; Yuan, T.; Kelman, G.; Shpund, J.; Benmoshe, N. The Sensitivity of the Hurricane Irene to aerosols and ocean coupling: Simulations with WRF with spectral bin microphysics. J. Atmos. Sci. 2014, submitted. [Google Scholar]
- Phillips, V.T.J.; Khain, A.; Benmoshe, N.; Ilotovich, E. Theory of time-dependent freezing and its application in a cloud model with spectral bin microphysics. I: Wet growth of hail. J. Atmos. Sci. 2014, in press. [Google Scholar]
- Phillips, V.T.J.; Khain, A.; Benmoshe, N.; Ilotovich, E.; Ryzhkov, A. Theory of time-dependent freezing and its application in a cloud model with spectral bin microphysics. II: Freezing raindrops and simulations. J. Atmos. Sci. 2014, in press. [Google Scholar]
- Ilotoviz, E.; Khain, A.P.; Phillips, V.T.J.; Benmoshe, N.; Ryzhkov, A.V. Effect of aerosols on formation and growth regime of hail and freezing drops. J. Atmos. Sci. 2014, submitted. [Google Scholar]
- Kumjian, M.R.; Khain, A.P.; Benmoshe, N.; Ilotoviz, E.; Ryzhkov, A.V.; Phillips, V.T.J. The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteorol. Climatol. 2014, in press. [Google Scholar]
- Khain, A.P.; Ilotoviz, E.; Benmoshe, N.; Phillips, V.T.J.; Kumjian, M.R.; Ryzhkov, A.V. 2014 Application of the theory of time-dependent freezing and hail growth to analysis of hail storm using a cloud model with SBM. In Proceedings of the 94-th AMS Conference,, Atlanta, GA, USA, 2–6 February 2014.
- Zipser, E.J. The role of unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Met. 1969, 8, 799–814. [Google Scholar] [CrossRef]
- Zipser, E.J. Mesoscale and convective–scale downdrafts as distinct components of squall–line circulation. Mon. Wea. Rev. 1977, 105, 1568–1589. [Google Scholar] [CrossRef]
- Houze, R.A., Jr.; Betts, A.K. Convection in GATE. Rev. Geophys. Space Phys. 1981, 19, 541–576. [Google Scholar] [CrossRef]
- Emanuel, K.A. The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci. 1989, 46, 3431–3456. [Google Scholar] [CrossRef]
- Yano, J.-I.; Emanuel, K.A. An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci. 1991, 48, 377–389. [Google Scholar] [CrossRef]
- Fritsch, J.M.; Chappell, C.F. Numerical prediction of convectively driven mesoscale pressure systems: Part I: Convective parameterization. J. Atmos. Sci. 1980, 37, 1722–1733. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme of cumulus parameterization in large–scale models. Mon. Wea. Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Zhang, G.J.; McFarlane, N.A. Sensitivity of climate simulations of the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos. Ocean 1995, 33, 407–446. [Google Scholar] [CrossRef]
- Bechtold, P.; Bazile, E.; Guichard, F.; Mascart, P.; Richard, E. A mass-flux convection scheme for regional and global models. Quart. J. R. Meteor. Soc. 2001, 127, 869–889. [Google Scholar] [CrossRef]
- Yano, J.-I. Downdraugh. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume I, in press. [Google Scholar]
- Warner, C.; Simpson, J.; Martin, D.W.; Suchman, D.; Mosher, F.R.; Reinking, R.F. Shallow convection on day 261 of GATE: Mesoscale arcs. Mon. Wea. Rev. 1979, 107, 1617–1635. [Google Scholar] [CrossRef]
- Zuidema, P.; Li, Z.; Hill, R.J.; Bariteau, L.; Rilling, B.; Fairall, C. Brewer, W.A.; Albrecht, B.; Hare, J. On trade wind cumulus cold pools. J. Atmos. Sci. 2012, 69, 258–280. [Google Scholar] [CrossRef]
- Barnes, G.M.; Garstang, M. Subcloud layer energetics of precipitating convection. Mon. Wea. Rev. 1982, 110, 102–117. [Google Scholar] [CrossRef]
- Addis, R.P.; Garstang, M.; Emmitt, G.D. Downdrafts from tropical oceanic cumuli. Bound. Layer Meteorol. 1984, 28, 23–49. [Google Scholar] [CrossRef]
- Young, G.S.; Perugini, S.M.; Fairall, C.W. Convective wakes in the Equatorial Western Pacific during TOGA. Mon. Wea. Rev. 1995, 123, 110–123. [Google Scholar] [CrossRef]
- Lima, M.A.; Wilson, J.W. Convective storm initiation in a moist tropical environment. Mon. Wea. Rev. 2008, 136, 1847–1864. [Google Scholar] [CrossRef]
- Flamant, C.; Knippertz, P.; Parker, D.J.; Chaboureau, J.-P.; Lavaysse, C.; Agusti-Panareda, A.; Kergoat, L. The impact of a mesoscale convective system cold pool on the northward propagation of the intertropical discontinuity over West Africa. Quart. J. R. Meteor. Soc. 2009, 135, 139–159. [Google Scholar] [CrossRef]
- Lothon, M.; Campistron, B.; Chong, M.; Couvreux, F.; Guichard, F.; Rio, C.; Williams, E. Life cycle of a mesoscale circular gust front observed by a C-band doppler radar in West Africa. Mon. Wea. Rev. 2011, 139, 1370–1388. [Google Scholar] [CrossRef]
- Dione, C.; Lothon, M.; Badiane, D.; Campistron, B.; Couvreux, F.; Guichard, F.; Sall, S.M. Phenomenology of Sahelian convection observed in Niamey during the early monsoon. Quart. J. R. Meteor. Soc. 2013. [Google Scholar] [CrossRef]
- Khairoutdinov, M.; Randall, D. High-resolution simulations of shallow-to-deep convection transition over land. J. Atmos. Sci. 2006, 63, 3421–3436. [Google Scholar] [CrossRef]
- Böing, S.J.; Jonker, H.J.J.; Siebesma, A.P.; Grabowski, W.W. Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci. 2012, 69, 2682–2698. [Google Scholar] [CrossRef]
- Schlemmer, L.; Hohenegger, C. The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci. 2014, submitted. [Google Scholar]
- Grandpeix, J-Y.; Lafore, J.-P. A density current parameterization coupled with emanuel’s convection scheme. Part I: The models. J. Atmos. Sci. 2010, 67, 881–897. [Google Scholar] [CrossRef]
- Yano, J.-I. Comments on “A density current parameterization coupled with emanuel’s convection scheme. Part I: The models”. J. Atmos. Sci. 2012, 69, 2083–2089. [Google Scholar] [CrossRef]
- Browning, K.A.; Hill, F.F.; Pardoe, C.W. Structure and mechanism of precipitation and the effect of orography in a wintertime warm sector. Quart. J. Roy. Meteor. Soc. 1974, 100, 309–330. [Google Scholar] [CrossRef]
- Fuhrer, O.; Schär, C. Embedded cellular convection in moist flow past topography. J. Atmos. Sci. 2005, 62, 2810–2828. [Google Scholar] [CrossRef]
- Yano, J.-I. Downscaling, parameterization, decomposition, compression: A perspective from the multiresolutional analysis. Adv. Geophy. 2010, 23, 65–71. [Google Scholar]
- Rezacova, D.; Szintai, B.; Jakubiak, B.; Yano, J.I.; Turner, S. Verification of high resolution precipitation forecast by radar-based data. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume II, in press. [Google Scholar]
- Vukicevic, T.; Rosselt, D. Analysis of the impact of model nonlinearities in inverse problem solving. J. Atmos. Sci. 2008, 65, 2803–2823. [Google Scholar] [CrossRef]
- Rosselt, D.; Bishop, C.H. Nonlinear parameter estimation: Comparison of an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm. Mon. Wea. Rev. 2012, 140, 1957–1974. [Google Scholar] [CrossRef]
- Khain, A. Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett. 2008. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or drought: How do aerosols affect precipitation. Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [PubMed]
- Boucher, O.; Quaas, J. Water vapour affects both rain and aerosol optical depth. Nat. Geosci. 2013, 6, 4–5. [Google Scholar] [CrossRef]
- Freud, E.; Rosenfeld, D. Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res. 2012, 117, D02207. [Google Scholar]
- Mewes, D. Test Einer Neuen Parametrisierung Konvektiven Niederschlags Im Klimamodell. Bachelor’s Thesis, University of Leipzig, Leipzig, Germany, 2013. [Google Scholar]
- Lohmann, U.; Quaas, J.; Kinne, S.; Feichter, J. Different approaches for constraining global climate models of the anthropogenic indirect aerosol effect. Bull. Am. Meteorol. Soc. 2007, 88, 243–249. [Google Scholar] [CrossRef]
- Bodas-Salcedo, A.; Webb, M.J.; Bony, S.; Chepfer, H.; Dufresne, J.-L.; Klein, S.A.; Zhang, Y.; Marchand, R.; Haynes, J.M.; Pincus, R.; et al. COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc. 2011, 92, 1023–1043. [Google Scholar] [CrossRef] [Green Version]
- Nam, C.; Quaas, J. Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat. J. Clim. 2012, 25, 4975–4992. [Google Scholar] [CrossRef]
- Nam, C.; Quaas, J.; Neggers, R.; Drian, C.S.; Isotta, F. Evaluation of boundary layer cloud parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data. J. Adv. Model. Earth Syst. 2014. [Google Scholar] [CrossRef]
- Gehlot, S.; Quaas, J. Convection-climate feedbacks in ECHAM5 general circulation model: A Lagrangian trajectory perspective of cirrus cloud life cycle. J. Clim. 2012, 25, 5241–5259. [Google Scholar] [CrossRef]
- Suzuki, K.; Stephens, G.L.; van den Heever, S.C.; Nakajima, T.Y. Diagnosis of the warm rain process in cloud-resolving models using joint CloudSat and MODIS observations. J. Atmos. Sci. 2011, 68, 2655–2670. [Google Scholar] [CrossRef]
- Schirber, S.; Klocke, D.; Pincus, R.; Quaas, J.; Anderson, J. Parameter estimation using data assimilation in an atmospheric general circulation model: From a perfect towards the real world. J. Adv. Model. Earth Syst. 2013, 5, 1942–2466. [Google Scholar]
- Yano, J.-I.; Lane, T.P. Convectively-generated gravity waves simulated by NAM-SCA. J. Geophys. Res. 2014. [Google Scholar] [CrossRef]
- Tobias, S.M.; Marston, J.B. Direct Statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett. 2013, 110, 104502. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, J.; Geleyn, J.-F.; Köhler, M.; Mironov, D.; Quaas, J.; Soares, P.M.M.; Phillips, V.T.J.; Plant, R.S.; Deluca, A.; Marquet, P.; et al. Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report. Atmosphere 2015, 6, 88-147. https://doi.org/10.3390/atmos6010088
Yano J, Geleyn J-F, Köhler M, Mironov D, Quaas J, Soares PMM, Phillips VTJ, Plant RS, Deluca A, Marquet P, et al. Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report. Atmosphere. 2015; 6(1):88-147. https://doi.org/10.3390/atmos6010088
Chicago/Turabian StyleYano, Jun–Ichi, Jean-François Geleyn, Martin Köhler, Dmitrii Mironov, Johannes Quaas, Pedro M. M. Soares, Vaughan T. J. Phillips, Robert S. Plant, Anna Deluca, Pascal Marquet, and et al. 2015. "Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report" Atmosphere 6, no. 1: 88-147. https://doi.org/10.3390/atmos6010088
APA StyleYano, J., Geleyn, J. -F., Köhler, M., Mironov, D., Quaas, J., Soares, P. M. M., Phillips, V. T. J., Plant, R. S., Deluca, A., Marquet, P., Stulic, L., & Fuchs, Z. (2015). Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report. Atmosphere, 6(1), 88-147. https://doi.org/10.3390/atmos6010088