Effect of Nearby Forest Fires on Ground Level Ozone Concentrations in Santiago, Chile
Abstract
:1. Introduction
2. Observations and Methods
3. Results and Discussion
3.1. Meteorological Aspects
3.2. Impacts on Primary Pollutants
Site | Day | CO (ppmv) | PM10 (μg·m−3) | O3 (ppbv) |
---|---|---|---|---|
Cerrillos | Historical Average | 0.61 ± 0.09 | 116 ± 19 | 45.1 ± 4.7 |
4 January 2014 | 1.84 | 493 | 127 | |
8 January 2014 | 2.26 | 888 | 92 | |
Parque O´higgins | Historical Average | 0.50 ± 0.24 | 83.8 ± 22.4 | 43.4 ± 20.0 |
4 January 2014 | 1.46 | 433 | 133 | |
8 January 2014 | 1.55 | 493 | 91 | |
Las Condes | Historical Average | 0.57 ± 0.18 | 109 ± 32 | 76 ± 17 |
4 January 2014 | 1.39 | 331 | 142 | |
8 January 2014 | 2.13 | 493 | 105 |
3.3. Ozone in Wildfire Days
Sites | Fire Day | Calculated (ppbv) | Measured (ppbv) | Difference (ppbv) |
---|---|---|---|---|
Las Condes | 4 | 100.19 | 142.15 | 41.96 |
8 | 74.20 | 104.7 | 30.5 | |
ParqueO’higgins | 4 | 67.66 | 132.8 | 65.14 |
8 | 42.40 | 90.55 | 48.15 | |
Cerrillos | 4 | 66.10 | 126.83 | 60.73 |
8 | 36.95 | 92.32 | 55.37 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Real, E.; Law, K.S.; Weinzierl, B.; Fiebig, M.; Petzold, A.; Wild, O.; Methven, J.; Arnold, S.; Stohl, A.; Huntrieser, H.; et al. Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic. J. Geophys. Res. 2007, 112, 1–19. [Google Scholar] [CrossRef]
- Hodnebrog, O.; Solberg, S.; Stordal, F.; Svendby, T.M.; Simpson, D.; Gauss, M.; Hilboll, A.; Pfister, G.G.; Turquety, S.; Richter, A.; et al. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007. Atmos. Chem. Phys. 2012, 12, 8727–8750. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.; Miranda, A.I.; Carvalho, A.; Schaap, M.; Borrego, C.; Sá, E. Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in Portugal. Sci. Total Environ. 2012, 414, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, D.A.; Wigder, N.L. Ozone production from wildfires: A critical review. Atmos. Environ. 2012, 51, 1–10. [Google Scholar] [CrossRef]
- Val Martin, M.; Honrath, R.E.; Owen, R.C.; Pfister, G.; Fialho, P.; Barata, F. Significant enhancements of nitrogen oxides, black carbon, and ozone in the North Atlantic lower free troposphere resulting from North American boreal wildfire. J. Geophys. Res. 2006, 111, D23S60. [Google Scholar] [CrossRef]
- Suarez, L.; Castillo, L.; Marín, M.; Carrillo, G.; Rímac, L.; Pomalaya, J.; Penacho, R. Study of the seasonal variation of tropospheric ozone and aerosols related to the biomass burning in Amazonian. Mosaico. Cient. 2006, 3, 1–5. [Google Scholar]
- Morris, G.A.; Hersey, S.; Thompson, A.M.; Pawson, S.; Nielsen, J.E.; Colarco, P.R.; Wallace, M.S.; McMillan, W.W.; Stohl, A.; Turquety, S.; et al. Alaskan and Canadian forest fires exacerbate ozone pollution over Houston, Texas, on 19 and 20 July 2004. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Pfister, G.G.; Wiedinmyer, C.; Emmons, L.K. Impacts of the fall 2007 California wildfires on surface ozone: Integrating local observations with global model simulations. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Mebust, A.K.; Cohen, R.C. Space-based observations of fire NOx emission coefficients: A global biome-scale comparison. Atmos. Chem. Phys. 2014, 14, 2509–2524. [Google Scholar] [CrossRef]
- Evans, L.F.; King, N.K.; Packham, D.R.; Stephens, E.T. Ozone measurements in smoke from forest fire. Environ. Sci. Technol. 1974, 8, 75–76. [Google Scholar] [CrossRef]
- Cheng, L.; McDonald, K.M.; Angle, R.P.; Sandhu, H.S. Forest fire enhanced photochemical air pollution. A case study. Atmos. Environ. 1998, 32, 673–681. [Google Scholar] [CrossRef]
- Chalbot, M.C.; Kavouras, I.C.; Dubois, D.W. Assessment of the contribution of wildfires in ozone concentrations in the Central U: Mexico Border Region. Aerosol Air Qual. Res. 2013, 13, 838–848. [Google Scholar] [CrossRef]
- Lei, W.; Molina, L.T. Modelling the impact of biomass burning on air quality in and around Mexico City. Atmos. Chem. Phys. 2013, 13, 2299–2319. [Google Scholar] [CrossRef] [Green Version]
- Crounse, J.D.; DeCarlo, P.F.; Blake, D.R.; Emmons, L.K.; Campos, E.C.; Apel, E.C.; Clarke, A.D.; Weinheimer, A.J.; McCabe, D.C.; Yokelson, R.J.; et al. Biomass burning and urban air pollution over the Central Mexican Plateau. Atmos. Chem. Phys. 2009, 9, 4929–4944. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Chand, D.; Hafner, W.; Westerling, A.; Spracklen, D. Influence of fires on O3 concentrations in the Western U.S. Environ. Sci. Technol. 2008, 42, 5885–5891. [Google Scholar] [CrossRef] [PubMed]
- Garreaud, R. The Andes climate and weather. Adv. Geosci. 2009, 7, 1–9. [Google Scholar] [CrossRef]
- Rappengluek, B.; Schmitz, R.; Bauerfeind, M.; Cereceda-Balic, F.; von Baer, D.; Jorquera, H.; Silva, Y.; Oyola, P. An urban photochemistry study in Santiago de Chile. Atmos. Environ. 2005, 39, 2913–2931. [Google Scholar] [CrossRef]
- Elshorbany, Y.F.; Kleffmann, J.; Kurtenbach, R.; Lissi, E.; Rubio, M.A.; Villena, G.; Gramsch, E.; Rickard, A.R.; Pilling, M.J.; Wiesen, P. Summertime photochemical ozone formation in Santiago, Chile. Atmos. Environ. 2009, 43, 6398–6407. [Google Scholar] [CrossRef]
- Romero, H.; Ihl, M.; Rivera, A.; Zalazar, P.; Azocar, P. Rapid urban growth, land-use changes and air pollution in Santiago, Chile. Atmos. Environ. 1999, 33, 4039–4047. [Google Scholar] [CrossRef]
- Rubio, M.A.; Lissi, E.; Villena, G.; Caroca, V.; Gramsch, E.; Ruiz, A. Estimation of hydroxyl and hydroperoxyl radicals concentrations in the urban atmosphere of Santiago. J. Chil. Chem. Soc. 2005, 50, 375–379. [Google Scholar] [CrossRef]
- Rutllant, J.; Garreaud, R. Episodes of strong flow down the western slope of the subtropical Andes. Mon. Weather Rev. 2004, 132, 611–622. [Google Scholar] [CrossRef]
- Armesto, J.; Arroyo, M.T.K.; Hinojosa, L.F. The Mediterranean enviroment of central Chile. In The Physical Geography of South America; Veblen, T., Young, K., Orme, A., Eds.; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Schulz, J.J.; Cayuela, L.; Echeverria, C.; Salas, J. Monitoring land cover change of the dryland landscape of Central Chile (1975–2008). Appl. Geogr. 2010, 30, 436–447. [Google Scholar] [CrossRef] [Green Version]
- Krishna, M.T.; Chauhan, A.J.; Freww, A.J.; Holgate, S.T. Toxicological mechanisms underling oxidant pollutants-induced airway injury. Rev. Environ. Health 1998, 13, 59–61. [Google Scholar] [PubMed]
- Yang, W.; Omaye, S.T. Air Pollutants oxidative stress and human health. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009, 674, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Shindell, D.; Kuylenstierna, J.C.I.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S.C.; Muller, N.; Janssens-Maenhout, G.; Raes, F.; et al. Simultaneous mitigating near-term climate change and improving human health and food security. Science 2012, 335, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, R.C.; Alcafuz, R. Variability of urban aerosols over Santiago, Chile: Comparison of surface PM10 concentrations and remote sensing with ceilometer and lidar. Aerosol Air Qual. Res. 2012, 12, 8–19. [Google Scholar] [CrossRef]
- SINCA 2014. National Service of Air Quality Information. Available online: http:// SINCA.mma.gob.cl (accessed on 1 November 2015).
- Olcese, L.E.; Toselli, B.M. Unexpected high levels of ozone measured in Cordoba, Argentina. J. Atmos. Chem. 1998, 31, 269–279. [Google Scholar] [CrossRef]
- Rubio, M.A.; Oyola, P.; Gramsch, E.; Lissi, E.; Pizarro, J.; Villena, G. Ozone and peroxyacetylnitrate in downtown Santiago, Chile. Atmos. Environ. 2004, 38, 4931–4939. [Google Scholar] [CrossRef]
- Khoder, M.I. Diurnal seasonal and weekdays-weekend variations of ground level ozone concentrations in an urban area in greater Cairo. Environ. Monit. Assess. 2009, 149, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Im, U.; Markakis, K.; Poupkou, A.; Melas, D.; Unal, A.; Gerasopoulos, E.; Daskalakis, N.; Kindap, T.; Kanakidou, M. The impact of temperature changes on summer time ozone and its precursors in the Eastern Mediterranean. Atmos. Chem. Phys. 2011, 11, 3847–3864. [Google Scholar] [CrossRef]
- Rubio, M.A.; Lissi, E.A. Temperature as thumb rule predictor of ozone levels in Santiago de Chile ground air. J. Chil. Chem. Soc. 2014, 59, 2427–2431. [Google Scholar] [CrossRef]
- Krupa, S.V.; Kickert, R.V. The greenhouse effect: Impact of ultraviolet B radiation, carbon dioxide and ozone on vegetation. Environ. Pollut. 1989, 61, 263–393. [Google Scholar] [CrossRef]
- Bell, M.L.; McDermontt, A.; Zeger, S.L.; Samet, J.M.; Dominici, F. Ozone and short term mortality in 95 U.S. urban communities. JAMA 2004, 292, 2372–2378. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, M.J.; Logan, J.A.; Mao, J.; Apel, E.; Riemer, D.; Blake, D.; Cohen, R.C.; Min, K.E.; Perrin, A.E.; Browne, E.C.; et al. Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: An integrated analysis of aircraft and satellite observations. Atmos. Chem. Phys. 2010, 10, 9739–9760. [Google Scholar] [CrossRef]
- Young, E.; Paton-Walsh, C. Emission ratios of the tropospheric Ozone precursors nitrogen dioxide and formaldehyde from Australia’s black Saturday fires. Atmosphere 2011, 2, 617–632. [Google Scholar] [CrossRef]
- Konovalov, I.B.; Beeckmann, M.; Kuznetsova, I.N.; Yurova, A.; Zvyagintsev, A.M. Atmospheric impacts of the 2010 Russian wildfires: Integrating modeling and measurements of an extreme air pollution episode in the Moscow region. Atmos. Chem. Phys. 2011, 11, 10031–10056. [Google Scholar] [CrossRef]
- Schreier, S.F.; Richter, A.; Kaiser, J.W.; Burrows, J.P. The empirical relationship between satellite-derived tropospheric NO2 and fire radiative power and possible implications for fire emissions rates of NOx. Atmos. Chem. Phys. 2014, 14, 2447–2466. [Google Scholar] [CrossRef]
- Burling, I.R.; Yokelson, R.J.; Griffith, D.W.T.; Johnson, T.J.; Veres, P.; Roberts, J.M.; Warneke, C.; Urbanski, S.P.; Reardon, J.; Weise, D.R.; et al. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the south eastern and south western United States. Atmos. Chem. Phys. 2010, 10, 11115–11130. [Google Scholar] [CrossRef]
- Roberts, J.M.; Veres, P.; Warneke, C.; Neuman, J.A.; Washenfelder, R.A.; Brown, S.S.; Baasandorj, M.; Burkholder, J.B.; Burling, I.R.; Johnson, T.J.; et al. Measurement of HONO, HNCO, and other inorganic acids by negative ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions. Atmos. Meas. Tech. 2010, 3, 981–990. [Google Scholar] [CrossRef]
- Nie, W.; Ding, A.J.; Xie, Y.N.; Xu, Z.; Mao, H.; Kerminen, V.; Zheng, L.F.; Qi, X.M.; Yang, X.Q.; Sun, J.N.; et al. Influence of biomass burning plumes on HONO chemistry in eastern China. Atmos. Chem. Phys. Discuss. 2014, 14, 7859–7887. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emissions of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles. 2001, 15, 955–966. [Google Scholar] [CrossRef]
- Contreras-Moctezuma, J.; Rodriguez-Trejo, D.A.; Retama-Hernandez, A.; Sanchez-Rodriguez, J.J.M. Smoke gases of wildfires in pinus hartwegii Forest. Agrociencia 2003, 37, 309–316. [Google Scholar]
- Yokelson, R.J.; Griffith, D.W.T.; Ward, D.E. Open-path Fourier transforms infrared studies of large scale laboratory biomass fires. J. Geophys. Res. 1996, 101, 21067–21080. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, S.J.; Li, L.M.; Ge, Y.S.; Shu, J.W.; Zhou, Y.; Xu, Y.Y.; Hu, J.N.; Liu, H.; Fu, L.X.; et al. The challenge to NOx emission control for heavy-duty diesel vehicles in China. Atmos. Chem. Phys. 2012, 12, 9365–9379. [Google Scholar] [CrossRef]
- Kurtenbach, R.; Kleffmann, J.; Niedojadlo, A.; Wiesen, P. Primary NO2 emissions and their impact on air quality in traffic environments in Germany. Environ. Sci. Eur. 2012, 24, 2–8. [Google Scholar] [CrossRef]
- Yao, X.; Lau, N.T.; Chan, C.K.; Fang, M. The use of tunnel concentration profile data to determine ratio of NO2/ NOx directly emitted from vehicles. Atmos. Chem. Phys. Discuss. 2005, 5, 12723–12740. [Google Scholar] [CrossRef]
- Bein, K.J.; Zhao, Y.; Johnston, M.V.; Wexler, A.S. Interactions between boreal wildfire and urban emissions. J. Geophys. Res. 2008, 113, DO 7304. [Google Scholar] [CrossRef]
- Singh, H.B.; Cai, C.; Kaduwela, A.; Weinheimer, A.; Wisthaler, A. Interaction of fire emissions and urban pollution over California: Ozone formation and air quality simulations. Atmos. Environ. 2012, 56, 45–51. [Google Scholar] [CrossRef]
- Wigder, N.L.; Jaffe, D.A.; Saketa, F.A. Ozone and particulate matter enhancements from regional wildfires observed at Mount Bachelor during 2004–2011. Atmos. Environ. 2013, 75, 24–31. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio, M.A.; Lissi, E.; Gramsch, E.; Garreaud, R.D. Effect of Nearby Forest Fires on Ground Level Ozone Concentrations in Santiago, Chile. Atmosphere 2015, 6, 1926-1938. https://doi.org/10.3390/atmos6121838
Rubio MA, Lissi E, Gramsch E, Garreaud RD. Effect of Nearby Forest Fires on Ground Level Ozone Concentrations in Santiago, Chile. Atmosphere. 2015; 6(12):1926-1938. https://doi.org/10.3390/atmos6121838
Chicago/Turabian StyleRubio, María A., Eduardo Lissi, Ernesto Gramsch, and René D. Garreaud. 2015. "Effect of Nearby Forest Fires on Ground Level Ozone Concentrations in Santiago, Chile" Atmosphere 6, no. 12: 1926-1938. https://doi.org/10.3390/atmos6121838
APA StyleRubio, M. A., Lissi, E., Gramsch, E., & Garreaud, R. D. (2015). Effect of Nearby Forest Fires on Ground Level Ozone Concentrations in Santiago, Chile. Atmosphere, 6(12), 1926-1938. https://doi.org/10.3390/atmos6121838