Spatiotemporal Interpolation of Rainfall by Combining BME Theory and Satellite Rainfall Estimates
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Rain Gauge Data
Statistical Magnitude | Values | Statistical Magnitude | Values |
---|---|---|---|
Count a | 260 | Standard deviation | 419.03 (mm) |
Minimum | 689.5 (mm) | Median | 1585.38 (mm) |
Maximum | 2849.35 (mm) | Skewness | 0.26 |
Mean | 1602.99 (mm) | Kurtosis | 2.56 |
Statistical Magnitude | Values | Statistical Magnitude | Values |
---|---|---|---|
Count | 3120 | Standard deviation | 117.81 (mm) |
Minimum | 0 (mm) | Median | 124.55 (mm) |
Maximum | 886.75 (mm) | Skewness | 1.6239 |
Mean | 134.23 (mm) | Kurtosis | 6.4883 |
2.3. Satellite Rainfall Data (TRMM 3B42)
3. Methods
3.1. Consistency Analysis of Rain Gauge Data
3.2. Validation of TRMM 3B42 Estimates and Soft Data Modeling
3.2.1 Validation of TRMM 3B42 Estimates
3.2.2 Soft Data Modeling
3.3. Spatiotemporal BME Analysis
- -
- It makes no restrictive assumptions concerning the linearity and normality of the interpolator (nonlinear interpolators and non-Gaussian laws are automatically incorporated).
- -
- It can synthesize various kinds of KBs (core and site-specific) in a general and unified manner, and it can readily consider uncertain yet valuable information at the interpolation points themselves, when available.
- -
- It offers a more sound characterization in terms of the complete estimation pdf at every space-time point. These pdf may have different shapes (non-Gaussian, in general). Based on the pdf one, can calculate a number of possible rainfall estimates (mean, mode, median, etc.) with their associated probabilities, accuracies and confidence intervals.
- -
- It derives certain mainstream geostatistics and space-time statistics techniques (e.g., statistical regression and kriging) as its special cases, thus demonstrating BME’s generalization power (e.g., when the G- and the S-KB are restricted to a two-point variogram and hard data, respectively, the BME obtains OK as its special case).
3.4. Model Evaluation
4. Results and Discussion
4.1. Rain Gauge Data Consistency Results and Analysis
4.2. Evaluation of TRMM 3B42 Estimates
4.3. Comparative Spatiotemporal Rainfall Mapping
4.3.1. Spatiotemporal Distribution of Annual Rainfall
4.3.2. Spatiotemporal Distribution of Monthly Rainfall
4.4. Cross-Validation Assessment Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Beven, K.J. Rainfall-Runoff Modelling: The Primer, 2nd ed.; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082. [Google Scholar] [CrossRef]
- Dingman, S.L. Physical Hydrology, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Tabios, G.Q.; Salas, J.D. A comparative analysis of techniques for spatial interpolation of precipitation1. J. Am. Water Resour. Assoc. 1985, 21, 365–380. [Google Scholar] [CrossRef]
- Parajka, J. Mapping long-term mean annual precipitation in slovakia using geostatistical procedures. In Proceedings of the International Conference on Problems in Fluid Mechanics and Hydrology, Prague, Czech Republic, 23–26 June 1999; pp. 424–430.
- Basistha, A.; Arya, D.; Goel, N. Spatial distribution of rainfall in indian himalayas—A case study of uttarakhand region. Water Resour. Manag. 2008, 22, 1325–1346. [Google Scholar] [CrossRef]
- Wang, J.-F.; Stein, A.; Gao, B.-B.; Ge, Y. A review of spatial sampling. Spat. Stat. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Christakos, G. A bayesian/maximum-entropy view to the spatial estimation problem. Math. Geol. 1990, 22, 763–777. [Google Scholar] [CrossRef]
- Christakos, G. Random Field Models in Earth Sciences; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Christakos, G. Modern Spatiotemporal Geostatistics; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Christakos, G.; Bogaert, P.; Serre, M.L. Temporal Gis; Springer: New York, NY, USA, 2002; Volume 1. [Google Scholar]
- Lee, S.-J.; Balling, R.; Gober, P. Bayesian maximum entropy mapping and the soft data problem in urban climate research. Ann. Assoc. Am. Geogr. 2008, 98, 309–322. [Google Scholar] [CrossRef]
- Orton, T.; Lark, R. Estimating the local mean for bayesian maximum entropy by generalized least squares and maximum likelihood, and an application to the spatial analysis of a censored soil variable. Eur. J. Soil. Sci. 2007, 58, 60–73. [Google Scholar] [CrossRef]
- Orton, T.; Lark, R. Accounting for the uncertainty in the local mean in spatial prediction by bayesian maximum entropy. Stoch. Env. Res. Risk Assess. 2007, 21, 773–784. [Google Scholar] [CrossRef]
- Bogaert, P. Spatial prediction of categorical variables: The bme approach. In Geoenv iv—Geostatistics for Environmental Applications; Springer: New York, NY, USA, 2004; pp. 271–282. [Google Scholar]
- Hristopulos, D.T.; Christakos, G. Practical calculation of non-gaussian multivariate moments in spatiotemporal bayesian maximum entropy analysis. Math. Geol. 2001, 33, 543–568. [Google Scholar] [CrossRef]
- Papantonopoulos, G.; Modis, K. A BME solution of the stochastic three-dimensional laplace equation representing a geothermal field subject to site-specific information. Stoch. Env. Res. Risk Assess. 2006, 20, 23–32. [Google Scholar] [CrossRef]
- Brus, D.; Bogaert, P.; Heuvelink, G. Bayesian maximum entropy prediction of soil categories using a traditional soil map as soft information. Eur. J. Soil Sci. 2008, 59, 166–177. [Google Scholar] [CrossRef]
- D’Or, D. Spatial Prediction of Soil Properties, the Bayesian Maximum Entropy Approach. Ph.D. dissertation, University Catholique de Louvain, Louvain, Belgium, 2003. [Google Scholar]
- Douaik, A.; Van Meirvenne, M.; Tóth, T. Soil salinity mapping using spatio-temporal kriging and bayesian maximum entropy with interval soft data. Geoderma 2005, 128, 234–248. [Google Scholar] [CrossRef]
- Quilfen, Y.; Chapron, B.; Collard, F.; Serre, M. Calibration/validation of an altimeter wave period model and application to topex/poseidon and jason-1 altimeters. Mar. Géod. 2004, 27, 535–549. [Google Scholar] [CrossRef]
- LoBuglio, J.N.; Characklis, G.W.; Serre, M.L. Cost-effective water quality assessment through the integration of monitoring data and modeling results. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Coulliette, A.D.; Money, E.S.; Serre, M.L.; Noble, R.T. Space/time analysis of fecal pollution and rainfall in an eastern north carolina estuary. Environ. Sci. Technol. 2009, 43, 3728–3735. [Google Scholar] [CrossRef] [PubMed]
- Bogaert, P.; Christakos, G.; Jerrett, M.; Yu, H.-L. Spatiotemporal modelling of ozone distribution in the state of california. Atmos. Environ. 2009, 43, 2471–2480. [Google Scholar] [CrossRef]
- Nazelle, A.d.; Arunachalam, S.; Serre, M.L. Bayesian maximum entropy integration of ozone observations and model predictions: An application for attainment demonstration in north carolina. Environ. Sci. Technol. 2010, 44, 5707–5713. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.; Christakos, G.; Wang, J.F. Comparative spatiotemporal analysis of fine particulate matter pollution. Environmetrics 2010, 21, 305–317. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y.-S.; Christakos, G.; Yang, W.-Z.; Liao, Y.-L.; Li, Z.-J.; Li, X.-Z.; Lai, S.-J.; Chen, H.-Y. Hand, foot and mouth disease: Spatiotemporal transmission and climate. Int. J. Health Geogr. 2011, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Christakos, G.; Olea, R.A.; Serre, M.L.; Wang, L.-L.; Yu, H.-L. Interdisciplinary Public Health Reasoning and Epidemic Modelling: The Case of Black Death; Springer: New York, NY, USA, 2005. [Google Scholar]
- Gesink Law, D.C.; Bernstein, K.T.; Serre, M.L.; Schumacher, C.M.; Leone, P.A.; Zenilman, J.M.; Miller, W.C.; Rompalo, A.M. Modeling a syphilis outbreak through space and time using the bayesian maximum entropy approach. Ann. Epidemiol. 2006, 16, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Douaik, A.; Van Meirvenne, M.; Tóth, T.; Serre, M. Space-time mapping of soil salinity using probabilistic bayesian maximum entropy. Stoch. Env. Res. Risk Assess. 2004, 18, 219–227. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Zhang, R. BME prediction of continuous geographical properties using auxiliary variables. Stoch. Env. Res. Risk Assess. 2014. [Google Scholar] [CrossRef]
- Akita, Y.; Carter, G.; Serre, M.L. Spatiotemporal nonattainment assessment of surface water tetrachloroethylene in New Jersey. J. Env. Qual. 2007, 36, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Messier, K.P.; Akita, Y.; Serre, M.L. Integrating address geocoding, land use regression, and spatiotemporal geostatistical estimation for groundwater tetrachloroethylene. Env. Sci. Technol. 2012, 46, 2772–2780. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Pilz, J.; Spoeck, G. Hierarchical bayesian space-time interpolation versus spatio-temporal bme approach. Adv. Geosci. 2010, 25, 97–102. [Google Scholar] [CrossRef]
- Kolovos, A. Comment on" hierarchical bayesian space-time interpolation versus spatio-temporal bme approach" by hussain et al. (2010). Adv. Geosci. 2010, 25, 179–179. [Google Scholar] [CrossRef]
- Ashiq, M.W.; Zhao, C.; Ni, J.; Akhtar, M. Gis-based high-resolution spatial interpolation of precipitation in mountain–plain areas of upper pakistan for regional climate change impact studies. Theor. Appl. Climatol. 2010, 99, 239–253. [Google Scholar] [CrossRef]
- Garcia, M.; Peters-Lidard, C.D.; Goodrich, D.C. Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern united states. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Xie, P.; Xiong, A.Y. A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Goovaerts, P. Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena 1999, 34, 227–242. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Matos, J.; Cohen Liechti, T.; Juízo, D.; Portela, M.; Schleiss, A. Can satellite based pattern-oriented memory improve the interpolation of sparse historical rainfall records? J. Hydrol. 2013, 492, 102–116. [Google Scholar] [CrossRef]
- Xu, S.-G.; Niu, Z.; Kuang, D.; Shen, Y.; Huang, W.-J.; Wang, Y. Estimating summer precipitation over the tibetan plateau with geostatistics and remote sensing. Mt. Res. Dev. 2013, 33, 424–436. [Google Scholar] [CrossRef]
- China Meteorological Data Network. Available online: http://data.cma.gov.cn/ (accessed on 31 August 2015).
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- McCuen, R.H. Hydrologic Analysis and Design; Prentice-Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Searcy, J.K.; Hardison, C.H. Double-Mass Curves; Tenique Report; United States Government Printing Office: Washington, DC, USA, 1960. [Google Scholar]
- Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Zeng, H.; Li, L.; Li, J. The evaluation of TRMM multisatellite precipitation analysis (TMPA) in drought monitoring in the lancang river basin. J. Geogr. Sci. 2012, 22, 273–282. [Google Scholar] [CrossRef]
- Zheng, D.; Bastiaanssen, W.G.M.; Junzhi, L. Monthly and Annual Validation of TRMM Mulitisatellite Precipitation Analysis (TMPA) Products in the Caspian Sea Region for the Period 1999–2013. In Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 3696–3699.
- Furuzawa, F.A.; Nakamura, K. Differences of rainfall estimates over land by tropical rainfall measuring mission (trmm) precipitation radar (pr) and trmm microwave imager (tmi)-dependence on storm height. J. Appl. Meteorol. 2005, 44, 367–383. [Google Scholar] [CrossRef]
- Luo, S.; Miao, J.F.; Niu, T.; Wei, C.X.; Wang, X. A Comparison of TRMM 3B42 Products with Rain Gauge Observations in China. Meteorol. Mon. 2011, 37, 1081–1090. [Google Scholar]
- Olea, R.A. A six-step practical approach to semivariogram modeling. Stoch. Env. Res. Risk Assess. 2006, 20, 307–318. [Google Scholar] [CrossRef]
- Wang, J.F; Zhang, T.L; Fu, B.J. A detector of spatial stratified heterogeneity. Geogr. Anal. 2015, in press. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, T.; Yang, X.; Christakos, G.; Wang, J.; Liu, L. Spatiotemporal Interpolation of Rainfall by Combining BME Theory and Satellite Rainfall Estimates. Atmosphere 2015, 6, 1307-1326. https://doi.org/10.3390/atmos6091307
Shi T, Yang X, Christakos G, Wang J, Liu L. Spatiotemporal Interpolation of Rainfall by Combining BME Theory and Satellite Rainfall Estimates. Atmosphere. 2015; 6(9):1307-1326. https://doi.org/10.3390/atmos6091307
Chicago/Turabian StyleShi, Tingting, Xiaomei Yang, George Christakos, Jinfeng Wang, and Li Liu. 2015. "Spatiotemporal Interpolation of Rainfall by Combining BME Theory and Satellite Rainfall Estimates" Atmosphere 6, no. 9: 1307-1326. https://doi.org/10.3390/atmos6091307
APA StyleShi, T., Yang, X., Christakos, G., Wang, J., & Liu, L. (2015). Spatiotemporal Interpolation of Rainfall by Combining BME Theory and Satellite Rainfall Estimates. Atmosphere, 6(9), 1307-1326. https://doi.org/10.3390/atmos6091307