Tracheobronchial and Alveolar Particle Surface Area Doses in Smokers
Abstract
:1. Introduction
2. Material and Methods
2.1. Contribution of Mainstream Smoke Aerosol to the Daily Dose
2.1.1. Experimental Campaign
2.1.2. Instrumentation and Particle Surface area Distributions Measurement
- a Scanning Mobility Particle Sizer spectrometer, SMPS 3936 (TSI Inc., Shoreview, MN, USA), made up of an Electrostatic Classifier EC 3080 (TSI Inc.), used to classify the sampled particles in different channels according to their size, and a CPC 3775 (TSI Inc.) to count the particles of the selected size. The SMPS 3936 is able to measure particle surface area distribution in the range of 6–800 nm with a minimum time resolution of 120 s;
- a TSI model 3321 Aerodynamic Particle Sizer (APS) spectrometer which is able to measure the surface area distribution of particles in the range 0.5–20 μm through a time-of-flight technique with a one-second time resolution;
- a thermo-dilution system (two-step dilution) made up of a Rotating Disk Thermodiluter, RDTD (model 379020; Matter Engineering AG) [50] and a Thermal Conditioner Air Supply (model 379030; Matter Engineering AG) [51] which is able to ensure proper sample conditioning during cigarette-generated particle number distribution and total concentration measurements. Temperature control is also allowed in the thermodilution section by a built-in heater with selectable temperatures;
- a TSI model 4410 flow meter to check flow rates in the tubing connecting the cigarette to the measuring devices.
2.1.3. Particle (Alveolar and Tracheobronchial) Deposited Doses in the MSS
2.2. Contribution of Secondhand Smoke Aerosol and “Free-Smoke” Particle Background to the Daily Dose
2.2.1. Experimental Campaign
2.2.2. Instrumentation and Particle Surface Area Distributions Measurement
2.2.3. Particle (Alveolar and Tracheobronchial) Deposited Doses in the SHS and B
3. Results and Discussion
3.1. Alveolar and Tracheobronchial Deposited Particle Surface Area Concentrations in the MSS
3.2. Alveolar and Tracheobronchial Particle Dose in the MSS
3.3. Alveolar and Tracheobronchial Particle Dose in the SHS and B
3.4. Daily Alveolar and Tracheobronchial Deposited Dose for a Typical Smoker
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Unfried, K.; Albrecht, C.; Klotz, L.O.; Mikecz, A.V.; Grether-Beck, S.; Schins, R.P.F. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicology 2007, 1, 52–71. [Google Scholar] [CrossRef]
- Schins, R.P.; Lightbody, J.H.; Borm, P.J.; Shi, T.; Donaldson, K.; Stone, V. Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicol. Appl. Pharmacol. 2004, 195, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S. Selected physiological effects of ultrafine particles in acute cardiovascular morbidity. Environ. Res. 2012, 115, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Semmler, M.; Seitz, J.; Erbe, F.; Mayer, P.; Heyder, J.; Oberdorster, G. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal. Toxicol. 2004, 16, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Garciduenas, L.; Reed, W.; Maronpot, R.R.; Henriquez-Roldan, C.; Delgado-Chavez, R.; Calderon-Garciduenas, A. Brain inflammation and Alzheimer’s like pathology in individuals exposed to severe air pollution. Toxicol. Pathol. 2004, 32, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Wilson, M.R.; MacNee, W.; Stone, V.; Donaldson, K. Size dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 2001, 175, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, U.C.; Samuelsen, M.; Aase, A.; Lovik, M. The capacity of particles to increase allergic sensitization is predicted by particle number and surface area, not by particle mass. Toxicol. Sci. 2004, 82, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Schmid, O.; Moller, W.; Semmler-Behnke, M.; Ferron, G.A.; Karg, E.; Lipka, J.; Shulz, H.; Kreyling, W.G.; Stoeger, T. Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers 2009, 14 (Suppl. S1), 67–73. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, G.; Marks, G.B.; Morawska, L. Health effects of daily airborne particle dose in children: direct association between personal dose and respiratory health effects. Environ. Pollut. 2013, 180, 246–250. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2004. [Google Scholar]
- American Cancer Society. Cancer Facts & Figures 2014; American Cancer Society: Atlanta, GA, USA, 2014. [Google Scholar]
- U.S. Department of Health and Human Services. How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General. In Nicotine Addiction: Past and Present; Centers for Disease Control and Prevention (US), National Center for Chronic Disease Prevention and Health Promotion (US), Office on Smoking and Health (US), Centers for Disease Control and Prevention (US): Atlanta, GA, USA, 2010. [Google Scholar]
- U.S. Department of Health and Human Services. The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2014.
- Pesch, B.; Kendzia, B.; Gustavsson, P.; Jockel, K.H.; Johnen, G.; Pohlabeln, H.; Olsson, A.; Ahrens, W.; Gross, I.M.; Bruske, I.; et al. Cigarette smoking and lung cancer—Relative risk estimates for the major histological types from a pooled analysis of case-control studies. Int. J. Cancer 2012, 131, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Simonato, L.; Agudo, A.; Ahrens, W.; Benhamou, E.; Benhamou, S.; Boffetta, P.; Brennan, P.; Darby, S.C.; Forastiere, F.; Fortes, C.; et al. Lung cancer and cigarette smoking in Europe: An update of risk estimates and an assessment of inter-country heterogeneity. Int. J. Cancer 2001, 91, 876–887. [Google Scholar] [CrossRef]
- Doll, R.; Peto, R. The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst. 1981, 66, 1191–1308. [Google Scholar] [PubMed]
- Doll, R.; Peto, R.; Boreham, J.; Sutherland, I. Mortality in relation to smoking: 50 years’ observations on male British doctors. Br. Med. J. 2004, 328, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Mong, C.; Garon, E.B.; Fuller, C.; Mahtabifard, A.; Mirocha, J.; Mosenifar, Z.; McKenna, R. High prevalence of lung cancer in a surgical cohort of lung cancer patients a decade after smoking cessation. J. Cardiothorac. Surg. 2011, 25, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Peto, R.; Darby, S.; Deo, H.; Silcocks, P.; Whitley, E.; Doll, R. Smoking, smoking cessation, and lung cancer in the UK since 1950: Combination of national statistics with two case-control studies. Br. Med. J. 2000, 321, 323–329. [Google Scholar] [CrossRef]
- Kralikova, E. Lung cancer and smoking. Lung Cancer 2012, 77 (Suppl. S1), S7–S8. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, H.; Zheng, S.; Ding, Z.; Chen, Z.; Jin, W.; Wang, L.; Wang, Z.; Fei, Y.; Zhang, S.; et al. Gender susceptibility for cigarette smoking-attributable lung cancer: A systematic review and meta-analysis. Lung Cancer 2014, 85, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Forastiere, F.; Perucci, C.A.; Arca, M.; Axelson, O. Indirect estimates of lung cancer death rates in Italy not attributable to active smoking. Epidemiology 1993, 4, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Crawford, T.V.; McGrowder, D.A.; Barnett, J.D.; McGaw, B.A.; McKenzie, I.F.; James, L.G. Tobacco-related chronic illnesses: A public health concern for Jamaica. Asian Pac. J. Cancer Prev. 2012, 13, 4733–4738. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.S.; Trommel, J.S.; Yan, X.J.; Ashley, D.; Watson, C.H. Determination of 14 polycyclic aromatic hydrocarbons in mainstream smoke from domestic cigarettes. Environ. Sci. Technol. 2005, 39, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.S.; Ward, J.; Hammond, D.; Watson, C.H. Mouth-level intake of benzo[a]pyrene from reduced nicotine cigarettes. Int. J. Environ. Res. Public Health 2014, 11, 11898–11914. [Google Scholar] [CrossRef] [PubMed]
- Morton, M.J.; Laffoon, S.W. Cigarette smoke chemistry market maps under Massachusetts Department of Public Health smoking conditions. Regul. Toxicol. Pharmacol. 2008, 51, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Vu, A.T.; Taylor, K.M.; Holman, M.R.; Ding, Y.S.; Hearn, B.; Watson, C.H. Polycyclic Aromatic Hydrocarbons in the Mainstream Smoke of Popular U.S. Cigarettes. Chem. Res. Toxicol. 2015, 28, 1616–1626. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.L.; Bodnar, J.A.; Brown, B.G.; Morgan, W.T.; Potts, R.J.; Borgerding, M.F. Assessment of dioxin and dioxin-like compounds in mainstream smoke from selected US cigarette brands and reference cigarettes. Food Chem. Toxicol. 2008, 46, 1721–1733. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.W. Levels of heavy metals in popular cigarette brands and exposure to these metals via smoking. Sci. World J. 2012, 2012, 729430. [Google Scholar] [CrossRef] [PubMed]
- Counts, M.E.; Hsu, F.S.; Laffoon, S.W.; Dwyer, R.W.; Cox, R.H. Mainstream smoke constituent yields and predicting relationships from a worldwide market sample of cigarette brands: ISO smoking conditions. Regul. Toxicol. Pharmacol. 2004, 39, 111–134. [Google Scholar] [CrossRef] [PubMed]
- Counts, M.E.; Morton, M.J.; Laffoon, S.W.; Cox, R.H.; Lipowicz, P.J. Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regul. Toxicol. Pharmacol. 2005, 41, 185–227. [Google Scholar] [CrossRef] [PubMed]
- Kazi, T.G.; Jalbani, N.; Arain, M.B.; Jamali, M.K.; Afridi, H.I.; Sarfraz, R.A.; Shah, A.Q. Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. J. Hazard. Mater. 2009, 163, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Pappas, R.S.; Fresquez, M.R.; Martone, N.; Watson, C.H. Toxic metal concentrations in mainstream smoke from cigarettes available in the USA. J. Anal. Toxicol. 2014, 38, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Yadav, S.; Singh, I. Trace metal concentration in different Indian tobacco products and related health implications. Food Chem. Toxicol. 2010, 48, 2291–2297. [Google Scholar] [CrossRef] [PubMed]
- Roemer, E.; Stabbert, R.; Rustemeier, K.; Veltel, D.J.; Meisgen, T.J.; Reininghaus, W.; Carchman, R.A.; Gaworski, C.L.; Podraza, K.F. Chemical composition, cytotoxicity and mutagenicity of smoke from US commercial and reference cigarettes smoked under two sets of machine smoking conditions. Toxicology 2004, 195, 31–52. [Google Scholar] [CrossRef] [PubMed]
- Stepanov, I.; Knezevich, A.; Zhang, L.; Watson, C.H.; Hatsukami, D.K.; Hecht, S.S. Carcinogenic tobacco-specific N-nitrosamines in US cigarettes: Three decades of remarkable neglect by the tobacco industry. Tob. Control 2012, 21, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Swauger, J.E.; Steichen, T.J.; Murphy, P.A.; Kinsler, S. An analysis of the mainstream smoke chemistry of samples of the U.S. cigarette market acquired between 1995 and 2000. Regul. Toxicol. Pharmacol. 2002, 35, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Adam, T.; McAughey, J.; McGrath, C.; Mocker, C.; Zimmermann, R. Simulta-neous online size and chemical analysis of gas phase and particulate phase of cigarette mainstream smoke. Anal. Bioanal. Chem. 2009, 394, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Alderman, S.L.; Ingebrethsen, B.J. Characterization of mainstream cigarette smoke particle size distributions from commercial cigarettes using a DMS500 fast particulate spectrometer and smoking cycle simulator. Aerosol. Sci. Technol. 2011, 45, 1409–1421. [Google Scholar] [CrossRef]
- Borgerding, M.; Klus, H. Analysis of complex mixtures e cigarette smoke. Exp. Toxicol. Pathol. 2005, 57 (Suppl. S1), 43–73. [Google Scholar] [CrossRef] [PubMed]
- Fuoco, F.C.; Buonanno, G.; Stabile, L.; Vigo, P. Influence parameters of particle concentration and size distribution in the mainstream of e-cigarettes. Environ. Pollut. 2014, 184, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Golia, E.E.; Dimirkou, A.; Mitsios, I.K. Accumulation of Metals on Tobacco Leaves (Primings) Grown in an Agricultural Area in Relation to Soil. Bull. Environ. Contam. Toxicol. 2007, 79, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- Golia, E.E.; Dimirkou, A.; Mitsios, I.K. Heavy-Metal Concentration in Tobacco Leaves in Relation to Their Available Soil Fractions. Commun. Soil Sci. Plant Anal. 2009, 40, 106–120. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Kane, D.B.; Asgharian, B.; Price, O.T.; Rostami, A.; Oldham, M.J. Effect of Smoking Parameters on the Particle Size Distribution and Predicted Airway Deposition of Main Stream Cigarette Smoke. Inhal. Toxicol. 2010, 22, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Valente, P.; Forastiere, F.; Bacosi, A.; Cattani, G.; Di Carlo, S.; Ferri, M.; Figà-Talamanca, I.; Marconi, A.; Paoletti, L.; Perucci, C.; et al. Exposure to fine and ultrafine particles from secondhand smoke in public places before and after the smoking ban, Italy 2005. Tob. Control 2007, 16, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, G.; Marini, S.; Morawska, L.; Fuoco, F.C. Individual dose and exposure of Italian children to ultrafine particles. Sci. Total Environ. 2012, 438, 271–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stabile, L.; Fuoco, F.C.; Marini, S.; Buonanno, G. Effects of the exposure to indoor cooking-generated particles on nitric oxide exhaled by women. Atmos. Environ. 2015, 103, 238–246. [Google Scholar] [CrossRef]
- Hueglin, C.; Scherrer, L.; Burtscher, H. An accurate, continuously adjustable dilution system (1:10 to 1:104) for submicron aerosols. J. Aerosol Sci. 1997, 28, 1049–1055. [Google Scholar] [CrossRef]
- Burtscher, H. Physical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci. 2005, 36, 896–932. [Google Scholar] [CrossRef]
- Buonanno, G.; Scungio, M.; Stabile, L.; Tirler, W. Ultrafine particle emission from incinerators: The role of the fabric filter. J. Air Waste Manag. Assoc. 2012, 62, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Jaques, P.A.; Zhu, Y.; Geller, M.D.; Sioutas, C. Evaluation of the SMPS-APS system as a continuous monitor for measuring PM2.5, PM10 and coarse (PM2.5–10) concentrations. Atmos. Environ. 2002, 36, 3939–3950. [Google Scholar] [CrossRef]
- Johnson, T.J.; Olfert, J.S.; Cabot, R.; Treacy, C.; Yurteri, C.U.; Dickens, C.; McAughey, J.; Symonds, J.P.R. Steady-state measurement of the effective particle density of cigarette smoke. J. Aerosol Sci. 2014, 75, 9–16. [Google Scholar] [CrossRef]
- Buonanno, G.; Giovinco, G.; Morawska, L.; Stabile, L. Tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy. Atmos. Environ. 2011, 45, 6216–6224. [Google Scholar] [CrossRef] [Green Version]
- Buonanno, G.; Giovinco, G.; Morawska, L.; Wang, L. Submicrometer Particle Dose for Different Population Age Groups in Brisbane, Australia. In Proceedings of Metrology Society of Australia Conference, Geelong, Australia, 19–21 October 2011.
- International Commission on Radiological Protection. Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protecton. Ann. ICRP 1994, 24, 1–482. [Google Scholar]
- Istituto Superiore di Sanità. Il Fumo in Italia. “In Indagini DOXA”. 2015. Available online: http://www.iss.it/fumo/index.php?lang=1&id=350&tipo=18 (accessed on 16 January 2016).
- Zacny, J.P.; Stitzer, M.L. Human Smoking Patterns, in: Monograph 7: The FTC Cigarette Test Method for Detemining Tar, Nicotine, and Carbon Monoxide Yields of U.S.; Cigarettes National Cancer Institute: Washington, DC, USA, 1988. [Google Scholar]
- Hammersley, J.M.; Handscomb, D.C. Monte Carlo Methods; Chapman and Hall: London, UK; New York, NY, USA, 1964. [Google Scholar]
- Marra, J.; Voetz, M.; Kiesling, H.J. Monitor for detecting and assessing exposure to airborne nanoparticles. J. Nanopart. Res. 2010, 12, 21–37. [Google Scholar] [CrossRef]
- Klepeis, N.E. Modeling Human Exposure to Air Pollution. Human Exposure Analysis; CRC Press: Stanford, CA, USA, 2006; pp. 1–18. [Google Scholar]
- US Environmental Protection Agency (US EPA). Air Quality Criteria for Particulate Matter (Final Report, Oct 2004) (No. EPA 600/P-99/002aF-bF); US EPA: Washington, DC, USA, 2004.
- Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Yeh, H.C.; Guilmette, R.A.; Simpson, S.Q.; Cheng, K.H.; Swift, D.L. Nasal Deposition of ultrafine particles in human volunteers and its relationship to airway geometry. Aerosol Sci. Technol. 1996, 25, 274–291. [Google Scholar] [CrossRef]
- Scungio, M.; Buonanno, G.; Arpino, F.; Ficco, G. Influential parameters on ultrafine particle concentrations downwind at waste-to-energy plants. Waste Manag. 2015, 38, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, G.; Fuoco, F.C.; Stabile, L. Influential parameters on particle exposure of pedestrians in urban microenvironments. Atmos. Environ. 2011, 45, 1434–1443. [Google Scholar] [CrossRef]
- Buonanno, G.; Morawska, L.; Stabile, L. Exposure to welding particles in automotive plants. J. Aerosol Sci. 2011, 42, 295–304. [Google Scholar] [CrossRef]
- Buonanno, G.; Morawska, L.; Stabile, L.; Viola, A. Exposure to particle number, surface area and PM concentrations in pizzerias. Atmos. Environ. 2010, 44, 3963–3969. [Google Scholar] [CrossRef] [Green Version]
- Buonanno, G.; Morawska, L.; Stabile, L.; Wang, L.; Giovinco, G. A comparison of submicrometer particle dose between Australian and Italian people. Environ. Pollut. 2012, 169, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuoco, F.C.; Stabile, L.; Buonanno, G.; Trassiera, C.; Massimo, A.; Russi, A.; Mazaheri, M.; Morawska, L.; Andrade, A. Indoor Air Quality in Naturally Ventilated Italian Classrooms. Atmosphere 2015, 6, 1652–1675. [Google Scholar] [CrossRef]
- Stabile, L.; Dell’Isola, M.; Frattolillo, A.; Massimo, A.; Russi, A. Effect of natural ventilation and manual airing on indoor air quality in naturally ventilated Italian classrooms. Build. Environ. 2016, 98, 180–189. [Google Scholar] [CrossRef]
- Sahu, S.K.; Tiwari, M.; Bhangare, R.C.; Pandit, G.G. Particle size distribution of mainstream and exhaled cigarette smoke and predictive deposition in human respiratory tract. Aerosol Air Qual. Res. 2013, 13, 324–332. [Google Scholar] [CrossRef]
- Buonanno, G.; Fuoco, F.C.; Morawska, L.; Stabile, L. Airborne particle concentrations at schools measured at different spatial scales. Atmos. Environ. 2013, 67, 38–45. [Google Scholar] [CrossRef]
- Buonanno, G.; Dell’Isola, M.; Stabile, L.; Viola, A. Critical aspects of the uncertainty budget in the gravimetric PM measurements. Measurement 2011, 44, 139–147. [Google Scholar] [CrossRef]
- Mazaheri, M.; Clifford, S.; Jayaratne, R.; Megat Mokhtar, M.A.; Fuoco, F.C.; Buonanno, G.; Morawska, L. School children’s personal exposure to ultrafine particles in the urban environment. Environ. Sci. Technol. 2014, 48, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Nicotine Content (mg) |
---|---|
Cigarette A | 0.6 |
Cigarette B | 0.6 |
Cigarette C | 0.8 |
Cigarette D | 0.5 |
Cigarette E | 0.6 |
Puff Volume, Vpuff (cm3) | Puffs per Cigarette, Npuff | Puff Time, tpuff (s) |
---|---|---|
42.5 ± 9.3 | 11.5 ± 2.2 | 1.8 ± 0.4 |
(mm2·Day−1) | (mm2·Day−1) | (mm2·Day−1) | (mm2·Day−1) | (mm2·Day−1) | (mm2·Day−1) | |
---|---|---|---|---|---|---|
MPV | 6.17 × 104 | 2.87 × 104 | 7.96 × 104 | 2.70 × 104 | 8.85 × 104 | 1.13 × 105 |
5th | 2.69 × 104 | 1.29 × 104 | 2.01 × 104 | 1.19 × 104 | 4.68 × 104 | 4.46 × 104 |
95th | 1.22 × 105 | 5.56 × 104 | 2.04 × 105 | 5.60 × 104 | 1.68 × 105 | 2.46 × 105 |
Sampler | Type of Measurement | Micro-Environment | (mm2·Day−1) | (mm2·Day−1) |
---|---|---|---|---|
(As non-smoker) | “Free smoke” background | 3.72 ± 1.08 × 102 | 7.51 ± 2.16 × 101 | |
Smoker | Secondhand smoke aerosol | Outdoor/urban city | 4.70 ± 3.85 × 102 | 9.47 ± 7.84 × 101 |
Indoor/home | 6.80 ± 1.81 × 102 | 1.38 ± 0.36 × 102 | ||
Transportation/car | 1.61 ± 0.51 × 103 | 3.26 ± 1.04 × 102 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuoco, F.C.; Stabile, L.; Buonanno, G.; Scungio, M.; Manigrasso, M.; Frattolillo, A. Tracheobronchial and Alveolar Particle Surface Area Doses in Smokers. Atmosphere 2017, 8, 19. https://doi.org/10.3390/atmos8010019
Fuoco FC, Stabile L, Buonanno G, Scungio M, Manigrasso M, Frattolillo A. Tracheobronchial and Alveolar Particle Surface Area Doses in Smokers. Atmosphere. 2017; 8(1):19. https://doi.org/10.3390/atmos8010019
Chicago/Turabian StyleFuoco, Fernanda Carmen, Luca Stabile, Giorgio Buonanno, Mauro Scungio, Maurizio Manigrasso, and Andrea Frattolillo. 2017. "Tracheobronchial and Alveolar Particle Surface Area Doses in Smokers" Atmosphere 8, no. 1: 19. https://doi.org/10.3390/atmos8010019
APA StyleFuoco, F. C., Stabile, L., Buonanno, G., Scungio, M., Manigrasso, M., & Frattolillo, A. (2017). Tracheobronchial and Alveolar Particle Surface Area Doses in Smokers. Atmosphere, 8(1), 19. https://doi.org/10.3390/atmos8010019