Total Lightning Flash Activity Response to Aerosol over China Area
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. Spatial and Temporal Distributions of AOD and Lightning Flash Density
3.2. Relationships between Lightning Density and Cloud Properties
3.3. Relationship between Lightning Flash Density and AOD
4. Summary and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Twomey, S. Influence of pollution on the short-wave albedo of clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or drought: How do aerosols affect precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Levin, Z.; Reisin, T.; Tzivion, S. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study. Atmos. Res. 2000, 53, 91–116. [Google Scholar] [CrossRef]
- Khain, A.; Rosenfeld, D.; Pokrovsky, A. Aerosol impact on the dynamics and microphysics of convective clouds. Q. J. R. Meteorol. Soc. 2005, 131, 2639–2663. [Google Scholar] [CrossRef]
- Van den Heever, S.C.; Carrio, G.G.; Cotton, W.R.; DeMott, P.G.; Prenni, A.J. Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale Simulations. J. Atmos. Sci. 2006, 63, 1752–1775. [Google Scholar] [CrossRef]
- Deierling, W.; Petersen, W.A. Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Deierling, W.; Petersen, W.; Latham, A.; Ellis, S.; Christian, H. The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Yoshida, S.; Morimoto, T.; Ushio, T.; Kawasaki, Z. A fifth-power relationship for lightning activity from Tropical Rainfall Measuring Mission satellite observations. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Takahashi, T. Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548. [Google Scholar] [CrossRef]
- Saunders, C.P.R.; Keith, W.D.; Mitzeva, R.P. The effect of liquid water on thunderstorm charging. J. Geophys. Res. 1991, 96, 11007–11017. [Google Scholar] [CrossRef]
- Westcott, N.E. Summertime cloud-to-ground lightning activity around major Midwestern urban areas. J. Appl. Meteorol. 1995, 34, 1633–1642. [Google Scholar] [CrossRef]
- Orville, R.R.; Huffines, G.; Gammon, J.N.; Zhang, R.; Ely, B.; Steiger, S.; Phillips, S.; Allen, S.; Read, W. Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett. 2001, 28, 2597–2600. [Google Scholar] [CrossRef]
- Soriano, L.R.; Pablo, F. Effect of small urban areas in central Spain on the enhancement of cloud-to-ground lightning activity. Atmos. Environ. 2002, 36, 2809–2816. [Google Scholar] [CrossRef]
- Steiger, S.M.; Orville, R.E.; Huffines, G. Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Kar, S.K.; Liou, Y.A.; Ha, K.J. Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Res. 2009, 92, 80–87. [Google Scholar] [CrossRef]
- Kar, S.K.; Liou, Y.A. Enhancement of cloud-to-ground lightning activity over Taipei, Taiwan in relation to urbanization. Atmos. Res. 2014, 147–148, 111–120. [Google Scholar] [CrossRef]
- Coquillat, S.; Boussaton, M.; Buguet, M.; Lambert, D.; Ribaud, J.; Berthelot, A. Lightning ground flash patterns over Paris area between 1992 and 2003: Influence of pollution? Atmos. Res. 2013, 122, 77–92. [Google Scholar] [CrossRef]
- Farias, W.R.G.; Pinto, O., Jr.; Pinto, I.R.C.A.; Naccarato, K.P. The influence of urban effect on lightning activity: Evidence of weekly cycle. Atmos. Res. 2014, 135–136, 370–373. [Google Scholar] [CrossRef]
- Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Kazantzidis, A. Lightning activity and aerosols in the Mediterranean region. Atmos. Res. 2016, 170, 66–75. [Google Scholar] [CrossRef]
- Farias, W.R.G.; Pinto, O., Jr.; Naccarato, K.P.; Pinto, I.R.C.A. Anomalous lightning activity over the Metropolitan Region of São Paulo due to urban effects. Atmos. Res. 2009, 91, 485–490. [Google Scholar] [CrossRef]
- Stallins, J.A.; Carpenter, J.; Bentley, M.L.; Ashley, W.S.; Mulholland, J.A. Weekend-weekday aerosols and geographic variability in cloud-to-ground lightning for the urban region of Atlanta, Georgia, USA. Reg. Environ. Chang. 2013, 1, 137–151. [Google Scholar] [CrossRef]
- Lal, D.M.; Pawar, S.D. Effect of urbanization on lightning over four metropolitan cities of India. Atmos. Environ. 2011, 45, 191–196. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, Q.; Meng, W.; Liao, F.; Tan, H.; Zhang, R. Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmos. Chem. Phys. 2011, 11, 12421–12436. [Google Scholar] [CrossRef]
- Tan, Y.B.; Peng, L.; Shi, Z.; Chen, H.R. Lightning flash density in relation to aerosol over Nanjing (China). Atmos. Res. 2016, 174–175, 1–8. [Google Scholar]
- Lyons, W.A.; Nelson, T.E.; Williams, E.R.; Cramer, J.; Turner, T. Enhanced positive cloud- to-ground lightning in thunderstorms ingesting smoke. Science 1998, 282, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.D.; Orville, R.E.; Huffines, G.R. Effect of pollution from Central American fires on cloud-to-ground lightning in May 1998. Geophys. Res. Lett. 2000, 27, 2249–2252. [Google Scholar] [CrossRef]
- Fernandes, W.A.; Pinto, I.R.C.A.; Pinto, O., Jr.; Longo, K.M.; Freitas, S.R. New findings about the influence of smoke from fires on the cloud-to-ground lightning characteristics in the Amazon region. Geophys. Res. Lett. 2006, 33, L20810. [Google Scholar] [CrossRef]
- Altaratz, O.; Koren, I.; Yair, Y.; Price, C. Lightning response to smoke from Amazonian fires. Geophys. Res. Lett. 2010, 37, L07801. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A. Cloud-to-ground lightning downwind of the 2002 Hayman forest fire in Colorado. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Mi, W.; Li, Z.Q.; Xia, X.G.; Holben, B.; Levy, R.; Zhao, F.S.; Chen, H.B.; Cribb, M. Evaluation of the Moderate Resolution Imaging Spectroradiometer aerosol products at two Aerosol Robotic Network stations in China. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Boucher, O.; Tanre, D.; Chin, M.; Remer, L.A.; Takemura, T. Aerosol anthropogenic component estimated from satellite data. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Cecil, D.J.; Buechker, D.E.; Blakeslee, R.J. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res. 2014, 135–136, 404–414. [Google Scholar] [CrossRef]
- Dai, J.; Wang, Y.; Chen, L.; Tao, L.; Gu, F.; Wang, J.; Xu, X.; Lin, H.; Gu, Y. A comparison of lightning activity and convective indices over some monsoon-prone areas of China. Atmos. Res. 2009, 91, 438–452. [Google Scholar] [CrossRef]
- Ma, M.; Tao, S.; Zhu, B.; Lu, W. Climatological distribution of lightning density observed by satellites in China and its circumjacent regions. Sci. China 2005, 48, 219–229. [Google Scholar] [CrossRef]
- Pan, L.; Liu, D.; Qie, X.; Wang, D.; Zhu, R. Land-sea contrast in the lightning diurnal variation as observed by the WWLLN and LIS/OTD data. Acta Meteor. Sin. 2013, 27, 591–600. [Google Scholar] [CrossRef]
- Qie, X.; Toumi, R.; Yuan, T. Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Yuan, T.; Qie, X. Study on lightning activity and precipitation characteristics before and after the onset of the South China Sea summer monsoon. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Liu, J. Temporal and spatial distributions of lightning activity in South China from TRMM satellite observations. J. Trop. Meteor. 2009, 25, 228–233. (In Chinese) [Google Scholar]
- Xia, R.; Zhang, D.; Wang, B. A 6-yr Cloud-to-Ground lightning climatology and its relationship to rainfall over Central and Eastern China. J. Appl. Meteor. Climatol. 2015, 54, 2443–2460. [Google Scholar] [CrossRef]
- Xu, H.; Guang, J.; Xue, Y.; Leeuw, G.; Che, Y.H.; Guo, J.; He, X.W.; Wang, T.K. A consistent aerosol optical depth (AOD) dataset over mainland China by integration of several AOD products. Atmos. Environ. 2015, 14, 48–56. [Google Scholar] [CrossRef]
- Zheng, X.; Luo, Y.; Zhao, T.; Chen, J.; Kang, W. Geographical and climatological characterization of aerosol distribution in China. Sci. Geogr. Sin. 2012, 32, 225–272. [Google Scholar]
- Zhao, T.; Gong, S.; Zhang, X.; Blanchet, J.; McKendry, I.; Zhou, Z. A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part I: Mean climate and validation. J. Clim. 2006, 19, 88–103. [Google Scholar] [CrossRef]
- Wang, G.; Lu, Q. Migration of rural population in recent years in China. Sci. Geogr. Sin. 2007, 27, 630–635. (In Chinese) [Google Scholar]
- Wu, G.X.; Li, Z.Q.; Fu, C.B. Advances in studying interactions between aerosols and monsoon in China. Sci. China Earth. Sci. 2016, 59, 1–16. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, R.; Wang, Y. Interannual variation of the wintertime fog–haze days across central and eastern China and its relation with East Asian winter monsoon. Int. J. Climatol. 2016, 36, 346–354. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, G.; Zhang, T. Characteristics of lightning distribution and lightning climate for China region. Arid Meteor. 2004, 22, 17–25. (In Chinese) [Google Scholar]
- Zhao, Y.; Xu, X.; Zhao, T.; Xu, H.; Mao, F.; Sun, H.; Wang, Y. Extreme precipitation events in East China and associated moisture transport pathways. Sci. China Earth. Sci. 2016, 59, 1854–1872. [Google Scholar] [CrossRef]
- Mitzeva, R.P.; Latham, J.; Petrova, S. A comparative modeling study of the early electrical development of maritime and continental thunderstorms. Atmos. Res. 2006, 82, 26–36. [Google Scholar] [CrossRef]
- Mansell, E.R.; Ziegler, C.L. Aerosol Effects on Simulated Storm Electrification and Precipitation in a Two-Moment Bulk Microphysics Model. J. Atmos. Sci. 2013, 70, 2032–2050. [Google Scholar] [CrossRef]
- Zhao, P.; Yin, Y.; Xiao, H. The effects of aerosol on development of thunderstorm electrification: A numerical study. Atmos. Res. 2015, 153, 376–391. [Google Scholar] [CrossRef]
- Zhao, P.; Yin, Y.; Xiao, H.; Zhou, Y.; Liu, J. Role of water vapor content in the effects of aerosol on the electrification of thunderstorms: A numerical study. Atmosphere 2016, 7, 137. [Google Scholar] [CrossRef]
- Shi, Z.; Tan, Y.; Tang, H.; Sun, J.; Yang, Y.; Peng, L.; Guo, X. Aerosol effect on the land-ocean contrast in thunderstorm electrification and lightning frequency. Atmos. Res. 2015, 164–165, 131–141. [Google Scholar] [CrossRef]
- Shi, Z.; Tan, Y.; Tang, H.; Yang, Y.; Peng, L.; Guo, X.; Chen, H. A numerical study of aerosol effects on the electrification and flash rate of thunderstorms. Chin. J. Atmos. Sci. 2015, 39, 941–952. [Google Scholar]
- Ushio, T.; Heckman, S.J.; Boccippio, D.J.; Christian, H.J.; Kawasaki, J.I. A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data. J. Geophys. Res. 2001, 106, 24089–24095. [Google Scholar] [CrossRef]
- Yair, Y.; Lynn, B.; Price, C.; Kotroni, V.; Lagouvardos, K.; Morin, E.; Mugnai, A.; Llasat, M.C. Predicting lightning density in Mediterranean storms based on the WRF model dynamic and microphysical fields. J. Geophys. Res. 2010, 115, D04025. [Google Scholar] [CrossRef]
- Williams, E.R. The Electrification of Severe Storms; American Meteorological Society: Washington, DC, USA, 2001; pp. 527–561. [Google Scholar]
- Chen, J.; Zheng, Y.; Zhang, X.; Zhu, P. Analysis of the climatological distribution and diurnal variation of the short-duration heavy rain and its relation with diurnal variations of the MCSs over China during the warm season. Acta Meteorol. Sin. 2013, 71, 367–382. (In Chinese) [Google Scholar]
- Williams, E.; Chan, T.; Boccippio, D. Islands as miniature continents: Another look at the land-ocean lightning contrast. J. Geophys. Res. 2011, 109. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Zhou, Y.; Xiao, H.; Liu, J.; Gao, J.; Ge, F. Total Lightning Flash Activity Response to Aerosol over China Area. Atmosphere 2017, 8, 26. https://doi.org/10.3390/atmos8020026
Zhao P, Zhou Y, Xiao H, Liu J, Gao J, Ge F. Total Lightning Flash Activity Response to Aerosol over China Area. Atmosphere. 2017; 8(2):26. https://doi.org/10.3390/atmos8020026
Chicago/Turabian StyleZhao, Pengguo, Yunjun Zhou, Hui Xiao, Jia Liu, Jinhui Gao, and Fei Ge. 2017. "Total Lightning Flash Activity Response to Aerosol over China Area" Atmosphere 8, no. 2: 26. https://doi.org/10.3390/atmos8020026
APA StyleZhao, P., Zhou, Y., Xiao, H., Liu, J., Gao, J., & Ge, F. (2017). Total Lightning Flash Activity Response to Aerosol over China Area. Atmosphere, 8(2), 26. https://doi.org/10.3390/atmos8020026