Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere
Abstract
:1. Introduction
2. How Can ENMs Be Released and How Much Is Emitted into Ambient Air During the Whole Life Cycle?
2.1. ENM Life-Cycle
2.2. Production of ENM: A Qualitative Overview
2.3. Internal Handling and Transport of ENMs
2.4. Emission from Stacks
2.5. Diffuse Emission from Building
2.6. ENM Emissions during Manufacturing and Processing of Composite Materials
2.7. Continuous Emission Rates from Industrial Plants
2.8. Emission During Use
2.9. Transportation of ENM
2.10. Emission into Air during Waste Treatment and Disposal
2.11. Emissions during Abnormal Conditions along the Life Cycle: Accidental Release
3. How Can ENMs Be Transformed during the Airborne Phase?
3.1. Physical Transformations
3.1.1. Coagulation
3.1.2. Condensation
3.1.3. Dissolution
3.1.4. Removal from Atmosphere
3.2. Chemical Transformations
3.2.1. Oxidation in Ambient Air
3.2.2. Reactions with Other Substances Apart from Oxygen
3.2.3. Photo-Induced Transformation Processes
4. What Are the Possible Atmospheric Implications of ENMs?
4.1. Photo-Catalytic Properties of TiO2
4.2. Atmospheric Relevant ENM Other Than TiO2
4.3. Other Effects of ENMs on the Atmosphere
5. How Long Will ENM Stay in the Atmosphere, How Far Are They Transported and Where Deposited?
5.1. Study Results on Atmospheric Processes Influencing Fate of UFP
5.1.1. Near-Source Processes: Coagulation Versus Dry Deposition
5.1.2. Dry Deposition
5.1.3. Wet Deposition
5.2. Evaluation of Numerical Modelling in Assessing the Fate of UFP and ENMs
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CNT | Carbon nano-tubes |
ENM | Engineered Nanomaterial(s) |
NP | Nanoparticle(s) |
ROS | Reactive oxygen species |
UFP | Ultrafine particles |
References
- Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial (2011/696/EU). Available online: https://ec.europa.eu/research/industrial_technologies/pdf/policy/commission-recommendation-on-the-definition-of-nanomater-18102011_en.pdf (accessed on 2 May 2017).
- Products of Nanotechnologies Adopted by the SCENIHR during the 28th Plenary Meeting of 19 January 2009. Available online: http://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf (accessed on 14 June 2016).
- Kreyling, W.G.; Semmler-Behnke, M.; Chaudhry, Q. A complementary definition of nanomaterial. Nano Today 2010, 5, 165–168. [Google Scholar] [CrossRef]
- Auffan, M.; Rose, J.; Bottero, J.Y.; Lowry, G.V.; Jolivet, J.P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Borm, P.J.; Robbins, D.; Haubold, S.; Kuhlbusch, T.; Fissan, H.; Donaldson, K.; Schins, R.; Stone, V.; Kreyling, W.; Lademann, J.; et al. The potential risks of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 2006, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Pei, L.; Xuan, S.; Yan, Q.; Gong, X. Particle size dependent rheological property in magnetic fluid. J. Magn. Magn. Mater. 2016, 408, 18–25. [Google Scholar] [CrossRef]
- Gupta, A.; Wiggers, H. Freestanding silicon quantum dots: Origin of red and blue luminescence. Nanotechnology 2010, 22, 055707. [Google Scholar] [CrossRef] [PubMed]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res. Int. 2013. [Google Scholar] [CrossRef] [PubMed]
- Garner, K.L.; Keller, A.A. Emerging patterns for engineered nanomaterials in the environment: A review of fate and toxicity studies. J. Nanopart. Res. 2014, 16, 1–28. [Google Scholar] [CrossRef]
- Sajid, M.; Ilyas, M.; Basheer, C.; Tariq, M.; Daud, M.; Baig, N.; Shehzad, F. Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. Int. 2015, 22, 4122–4143. [Google Scholar] [CrossRef] [PubMed]
- Farré, M.; Sanchís, J.; Barceló, D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal. Chem. 2011, 30, 517–527. [Google Scholar] [CrossRef]
- French Ministry for Ecology, Energy and Sea. Éléments Issus des Déclarations des Substances à l’État Nanoparticulaire. Direction Générale de la Prévention des Risques, Service des Risques Sanitaires Liés à l’Environnement, des Déchets et des Pollutions Diffuses, December 2015. Available online: https://www.actu-environnement.com/media/pdf/news-27025-rapport-r-nano.pdf (accessed on 2 May 2017).
- Sun, T.Y.; Gottschalk, F.; Hungerbühler, K.; Nowack, B. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ. Pollut. 2014, 185, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Research and Markets. Available online: http://www.researchandmarkets.com/reports/2488811/the_global_market_for_metal_oxide_nanoparticles (accessed on 3 November 2016).
- Nowack, B.; Brouwer, C.; Geertsma, R.E.; Heugens, E.H.W.; Ross, B.L.; Toufektsian, M.C.; Wijnhoven, S.W.P.; Aitken, R.J. Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. Nanotoxicology 2012, 7, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Collin, B.; Auffan, M.; Johnson, A.C.; Kaur, I.; Keller, A.A.; Lazareva, A.; Lead, J.R.; Ma, X.; Merrifield, R.C.; Svendsen, C.; et al. Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ. Sci. Nano 2014, 1, 533–548. [Google Scholar] [CrossRef]
- Xia, T.; Li, N.; Nel, A.E. Potential health impact of nanoparticles. Annu. Rev. Public Health 2009, 30, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Montaño, M.D.; Lowry, G.V.; von der Kammer, F.; Blue, J.; Ranville, J.F. Current status and future direction for examining engineered nanoparticles in natural systems. Environ. Chem. 2014, 11, 351–366. [Google Scholar] [CrossRef]
- Kuhlbusch, T.A.; Quincey, P.; Fuller, G.W.; Kelly, F.; Mudway, I.; Viana, M.; Querol, X.; Alastuey, A.; Katsouyanni, K.; Weijers, E.; et al. New Directions: The future of European urban air quality monitoring. Atmos. Environ. 2014, 87, 258–260. [Google Scholar] [CrossRef]
- Abbott, L.C.; Maynard, A.D. Exposure assessment approaches for engineered nanomaterials. Risk Anal. 2010, 30, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Meesters, J.A.; Veltman, K.; Hendriks, A.J.; van de Meent, D. Environmental exposure assessment of engineered nanoparticles: Why REACH needs adjustment. Integr. Environ. Assess. Manag. 2013, 9, e15–e26. [Google Scholar] [CrossRef] [PubMed]
- Nowack, B.; Ranville, J.F.; Diamond, S.; Gallego-Urrea, J.A.; Metcalfe, C.; Rose, J.; Horne, N.; Koelmans, A.A.; Klaine, S.J. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 2012, 31, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Tanaka, H. Formation and dissociation of atmospheric particulate nitrate and chloride: An approach based on phase equilibrium. Atmos. Environ. 1996, 30, 639–648. [Google Scholar] [CrossRef]
- Kulmala, M.; Vehkamäki, H.; Petäjä, T.; Dal Maso, M.; Lauri, A.; Kerminen, V.M.; Birmly, W.; McMurry, P.H. Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci. 2004, 35, 143–176. [Google Scholar] [CrossRef]
- Khoder, M.I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 2002, 49, 675–684. [Google Scholar] [CrossRef]
- Gutleb, A.C.; Cambier, S.; Fernandes, T.; Georgantzopoulou, A.; Kuhlbusch, T.A.J.; Lynch, I.; Macken, A.; Mehennaoui, K.; Mowller, R.; Nickel, C.; et al. Chapter 4: Environmental Fate and Effects of Nanomaterials in Aquatic Freshwater Environments. In Nanomaterials—A Guide to Fabrication and Applications; Krishnamoorthy, S., Ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Baalousha, M.; Cornelis, G.; Kuhlbusch, T.A.J.; Lynch, I.; Nickel, C.; Peijnenburg, W.; van den Brink, N.W. Modeling nanomaterial fate and uptake in the environment: Current knowledge and future trends. Environ. Sci. Nano 2016, 3, 323. [Google Scholar] [CrossRef]
- Keller, A.; McFerran, S.; Lazareva, A.; Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013, 15, 1–17. [Google Scholar] [CrossRef]
- Gottschalk, F.; Lassen, C.; Kjoelholt, J.; Christensen, F.; Nowack, B. Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int. J. Environ. Res. Public Health 2015, 12, 5581–5602. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.C.; Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447–4453. [Google Scholar] [CrossRef] [PubMed]
- Mahendra, S.; Zhu, H.; Colvin, V.L.; Alvarez, P.J. Quantum dot weathering results in microbial toxicity. Environ. Sci. Technol. 2008, 42, 9424–9430. [Google Scholar] [CrossRef] [PubMed]
- Fabrega, J.; Fawcett, S.R.; Renshaw, J.C.; Lead, J.R. Silver nanoparticle impact on bacterial growth: Effect of pH, concentration, and organic matter. Environ. Sci. Technol. 2009, 43, 7285–7290. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lyon, D.Y.; Li, Q.; Alvarez, P.J. Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension. Environ. Toxicol. Chem. 2008, 27, 1888–1894. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Bischoff, M.; Nies, L.; Applegate, B.; Turco, R.F. Impact of fullerene (C60) on a soil microbial community. Environ. Sci. Technol. 2007, 41, 2985–2991. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.; Handy, R. Viewpoint: Formulating the problems for environmental risk assessment of nanomaterials. Environ. Sci. Technol. 2007, 41, 5582–5588. [Google Scholar] [PubMed]
- Wiesner, M.R.; Lowry, G.V.; Jones, K.L.; Hochella, M.F., Jr.; Di Giulio, R.T.; Casman, E.; Bernhardt, E.S. Decreasing Uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 2009, 43, 6458–6462. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.J.; Marr, L.C. The Role of Atmospheric Transformations in Determining Environmental Impacts on Carbonaceous Nanoparticles. J. Environ. Qual. 2010, 39, 1883–1895. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, E.S.; Colman, B.P.; Hochella, M.F.; Cardinale, B.J.; Nisbet, R.M.; Richardson, C.J.; Yin, L. An ecological perspective on nanomaterial impacts in the environment. J. Environ. Qual. 2010, 39, 1954–1965. [Google Scholar] [CrossRef] [PubMed]
- Lowry, G.V.; Gregory, K.B.; Apte, S.C.; Lead, J.R. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893–6899. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Kuhlbusch, T.; Tongeren, M.; Jiménez, A.S.; Tuinman, I.; Chen, R.; Larazza Alvaraz, I.; Mikolajczik, U.; Nickel, C.; Meyer, J.; et al. Airborne engineered nanomaterials in the workplace—A review of release and worker exposure during nanomaterial production and handling processes. J. Hazard. Mater. 2016, 322 Pt A, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Kuhlbusch, T.; Asbach, C.; Fissan, H.; Göhler, D.; Stintz, M. Nanoparticle exposure at nanotechnology workplaces: A review. Part. Fibre Toxicol. 2011, 8. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, D. Exposure to manufactured nanoparticles in different workplaces. Toxicology 2010, 269, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Guzman, A.; Nowack, B. A critical review of engineered nanomaterial release data: Are current data useful for material flow modeling? Environ. Pollut. 2016, 213, 502–517. [Google Scholar] [CrossRef] [PubMed]
- Nanoengineering—Global Approaches to Health and Safety Issues; Dolez, P.I. (Ed.) Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Nowack, B.; Mueller, N.C.; Krug, H.F.; Wick, P. How to consider engineered nanomaterials in major accident regulations? Environ. Sci. Eur. 2014, 26, 1–10. [Google Scholar] [CrossRef]
- Gottschalk, F.; Nowack, B. The release of engineered nanomaterials to the environment. J. Environ. Monit. 2011, 13, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Broomfield, M.; Foss Hansen, S.; Pelsy, F. Support for 3rd Regulatory Review on Nanomaterials: Project Report; European Commission; ENV.A.3/ETU/2015/0030; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- XP CEN ISO/TS 80004-8:2013. Nanotechnologies—Vocabulary—Part 8: Nanomanufacturing Processes. Classification Index: T 16-101-8. AFNOR: Paris, June 2015. Available online: https://www.iso.org/standard/52937.html (accessed on 2 May 2017).
- Vignes, A. Panorama des Principaux Procédés de Production, Utilisation, Transformation de Nanomatériaux; Rapport DRA-14-133557-00736A; INERIS: Verneuil-en-Halatte, France, 2013; 82 p. [Google Scholar]
- Virji, M.A.; Stefaniak, A.B. A Review of Engineered Nanomaterial Manufacturing Processes and Associated Exposures, Comprehesive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2014; Volume 8, pp. 103–125. [Google Scholar]
- Geraci, C.; Heidel, D.; Sayes, C.; Hodson, L.; Schulte, P.; Eastlake, A.; Brenner, S. Perspectives on the design of safer nanomaterials and manufacturing processes. J. Nanopart. Res. 2015, 17, 366. [Google Scholar] [CrossRef] [PubMed]
- Gridelet, L.; Delbecq, P.; Hervé, L.; Boissolle, P.; Fleury, D.; Kowal, S.; Fayet, G. Proposal of a new risk assessment method for the handling of powders and nanomaterials. Ind. Health 2015, 53, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Report for EU Project MARINA: Managing Risks of Nanomaterials; Summary Report on Processes and Activities Related to NM Lifecycle within Small and Large Industries; Grant Agreement Number 263215. Available online: http://www.marina-fp7.eu/activities/exposure/MARINA_Processes_Activities_related_NM_Lifecycle.pdf (accessed on 2 May 2017).
- Engineered Nanomaterials: Evidence on the Effectiveness of Workplace Controls to Prevent Exposure. Safe Work Australia; ISBN 978-0-642-32884-7. 2009; 75 p. Available online: https://www.safeworkaustralia.gov.au/system/files/documents/1702/engineerednanomaterials_evidence_effectiveness_workplacecontrolstopreventexposure_2009_pdf.pdf (accessed on 2 May 2017).
- NF EN 1822-1:2010, High Efficiency Air Filters (EPA, HEPA and ULPA)—Part 1: Classification, Performance Testing, Marking, Classification Index: X 44-014-1, AFNOR, Paris, January 2010. Available online: https://www.boutique.afnor.org/norme/nf-en-1822-1/filtres-a-air-a-haute-efficacite-epa-hepa-et-ulpa-partie-1-classification-essais-de-performance-et-marquage/article/774500/fa157753 (accessed on 2 May 2017).
- Lee, K.W.; Liu, B.Y.H. On the Minimum Efficiency and the Most Penetrating Particle Size for Fibrous Filters. J. Air Pollut. Control. Assoc. 1980, 30, 377–381. [Google Scholar] [CrossRef]
- Podgórski, A.; Bałazy, A.; Gradon, L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci. 2006, 61, 6804–6815. [Google Scholar] [CrossRef]
- Jones, A.M.; Harrison, R.M. Emission of ultrafine particles from the incineration of municipal solid waste: A review. Atmos. Environ. 2016, 140, 519–528. [Google Scholar] [CrossRef]
- Hleis, D.; Fernández-Olmo, I.; Ledoux, F.; Kfoury, A.; Courcot, L.; Desmonts, T.; Courcot, D. Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. J. Hazard. Mater. 2013, 250–251, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Monfort, E.; Sanfélix, V.; Celades, I.; Gomar, S.; Martín, F.; Aceña, B.; Pascual, A. Diffuse PM10 emission factors associated with dust abatement technologies in the ceramic industry. Atmos. Environ. 2011, 45, 7286–7292. [Google Scholar] [CrossRef]
- Nowack, B.; David, R.M.; Fissan, H.; Morris, H.; Shatkin, J.A.; Stintz, M.; Zepp, R.; Brouwer, D. Potential release scenarios for carbon nanotubes used in composites. Environ. Int. 2013, 59, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Directive 2010/75/Eu of the European Parliament and of the Council of 24 November 2010; on Industrial Emissions (Integrated Pollution Prevention and Control). Official Journal of the European Union, 17 December 2010; p. L: 334/17. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:334:0017:0119:en:PDF (accessed on 4 May 2017).
- European Pollutant Release and Transfer Register. Available online: http://prtr.ec.europa.eu/ (accessed on 2 May 2017).
- Décret no 2012-232 du 17 Février 2012 Relatif à la Déclaration Annuelle des Substances à l’Etat Nanoparticulaire Pris en Application de l’Article, L., 523-4 du Code de l’Environnement. Journal Officiel de la République Française, 19 February 2012. Available online: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000025377246&categorieLien=id (accessed on 4 May 2017).
- R-Nano, Eléments Issus des Déclarations des Substances à L’état Nanoparticulaire, Déclarations des Substances à l’État Nanoparticulaire—Exercice 2015: Rapport D’étude. Ministère de l’Environnement, de l’Énergie et de la Mer: Paris, France, 2015. Available online: https://www.r-nano.fr (accessed on 2 May 2017).
- Bressot, C.; Manier, N.; Pagnoux, C.; Aguerre-Chariol, O.; Morgeneyer, M. Environmental release of engineered nanomaterials from commercial tiles under standardized abrasion conditions. J. Hazard. Mater. 2017, 322 Pt A, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Wohlleben, W.; Brill, S.; Meier, M.W.; Mertler, M.; Cox, G.; Hirth, S.; von Vacano, B.; Strauss, V.; Treumann, S.; Wiench, K.; et al. On the Lifecycle of Nanocomposites: Comparing Released Fragments and their In-Vivo Hazards from Three Release Mechanisms and Four Nanocomposites. Small 2011, 7, 2384–2395. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, L. The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym. Degrad Stab. 2009, 94, 873–876. [Google Scholar] [CrossRef]
- Göhler, D.; Stintz, M.; Hillemann, L.; Vorbau, M. Characterization of Nanoparticle Release from Surface Coatings by the Simulation of a Sanding Process. Ann. Occup. Hyg. 2010, 54, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan, O.; Shandilya, N.; Gheerardyn, L.; Guillon, O.; Dore, E.; Morgeneyer, M. Investigation of the release of particles from a nanocoated product. Adv. Nanopart. 2013, 2, 39–44. [Google Scholar] [CrossRef]
- Kuhlbusch, T.; Kaminski, H. Release from Composites by Mechanical and Thermal Treatment: Test Methods. In Safety of Nanomaterials along Their Life Cycle; Wohleben, W., Kuhlbusch, T., Schnekenburger, J., Lehr, C.-M., Eds.; CRC Press: New York, NY, USA, 2015; pp. 247–276. [Google Scholar]
- Froggett, S.J.; Clancy, S.F.; Boverhof, D.R.; Canady, R.A. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part. Fibre Toxicol. 2014, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Wohlleben, W.; Kuhlbusch, T.A.; Schnekenburger, J.; Lehr, C.M. Safety of Nanomaterials along Their Lifecycle: Release, Exposure, and Human Hazards; CRC Press: New York, NY, USA, 2015. [Google Scholar]
- Holder, A.L.; Vejerano, E.P.; Zhoub, X.; Marr, L.C. Nanomaterial disposal by incineration. Environ. Sci. Process. Impacts 2013, 15, 1652–1664. [Google Scholar] [CrossRef] [PubMed]
- Ounoughene, G.; Le Bihan, O.; Chivas-Joly, C.; Motzkus, C.; Longuet, C.; Debray, B.; Joubert, A.; Le Coq, L.; Lopez-Cuesta, J.M. Behavior and fate of halloysite nanotubes (HNTs) when incinerating PA6/HNTs nanocomposite. Environ. Sci. Technol. 2015, 49, 5450–5457. [Google Scholar] [CrossRef] [PubMed]
- Ounoughene, G.; Le Bihan, O.; Chivas-Joly, C.; Longuet, C.; Motzkus, C.; Debray, B.; Joubert, A.; Lopez-Cuesta, J.M.; Le Coq, L. Aerosol of silica nanoparticles generated during the combustion of a polysiloxane nanocomposite. In Proceedings of the Aerosol Technology 2015 conference, Tampere, Finland, 15–17 June 2015; Available online: http://www.tut.fi/at2015/wp-content/uploads/abstracts_download.pdf (accessed on 2 May 2017).
- Kiser, M.A.; Westerhoff, P.; Benn, T.; Wang, Y.; Pérez-Rivera, J.; Hristovski, K. Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 2009, 43, 6757–6763. [Google Scholar] [CrossRef] [PubMed]
- Limbach, L.K.; Bereiter, R.; Müller, E.; Krebs, R.; Gälli, R.; Stark, W.J. Removal of Oxide Nanoparticles in a Model Wastewater Treatment Plant: Influence of Agglomeration and Surfactants on Clearing Efficiency. Environ. Sci. Technol. 2008, 42, 5828–5833. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Fennell, P.; Robins, A. Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities. J. Nanopart. Res. 2010, 12, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- Hristozov, D.; Malsch, I. Hazards and Risks of Engineered Nanoparticles for the Environment and Human Health. Sustainability 2009, 1, 1161–1194. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1999; 504 p. [Google Scholar]
- Maynard, A.D.; Kuempel, E.D. Airborne nanostructured particles and occupational health. J. Nanopart. Res. 2005, 7, 587–614. [Google Scholar] [CrossRef]
- Quik, J.T.K.; Stuart, M.C.; Wouterse, M.; Peijnenburg, W.; Hendriks, A.J.; van de Meent, D. Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environ. Toxicol. Chem. 2012, 31, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.; Baron, P.A.; Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Seipenbusch, M.; Binder, A.; Kasper, G. Temporal Evolution of Nanoparticle Aerosols in Workplace Exposure. Ann. Occup. Hyg. 2008, 52, 707–716. [Google Scholar] [PubMed]
- Diegoli, S.; Manciulea, A.L.; Begum, S.; Jones, I.P.; Lead, J.R.; Preece, J.A. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci. Total Environ. 2008, 402, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Stankus, D.P.; Lohse, S.E.; Hutchison, J.E.; Nason, J.A. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ. Sci. Technol. 2010, 45, 3238–3244. [Google Scholar] [CrossRef] [PubMed]
- Graber, E.R.; Rudich, Y. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 2006, 6, 729–753. [Google Scholar] [CrossRef]
- Lee, J.; Donahue, N.M. Secondary Organic Aerosol Coating of Synthetic Metal-Oxide Nanoparticles. Environ. Sci. Technol. 2011, 45, 4689–4695. [Google Scholar] [CrossRef] [PubMed]
- Kupc, A.; Bischof, O.; Tritscher, T.; Beeston, M.; Krinke, T.; Wagner, P.E. Laboratory characterization of a new nano-water-based CPC 3788 and performance comparison to an ultrafine butanol-based CPC 3776. Aerosol Sci. Technol. 2013, 47, 183–191. [Google Scholar] [CrossRef]
- Asbach, C.; Meyer-Plath, A.; Clavaguera, S.; Fierz, M.; Dahmann, D.; MacCalman, L.; Alexander, C.; Todea, A.M.; Iavicoli, I. nanoIndEx—Assessment of Personal Exposure to Airborne Nanomaterials—A Guidance Document. 2016, p. 47. Available online: http://www.nanoindex.eu/wp-content/uploads/2016/06/Nano_Brosch%C3%BCre.pdf (accessed on 4 October 2016).
- Slowik, J.G.; Cross, E.S.; Han, J.H.; Kolucki, J.; Davidovits, P.; Williams, L.R.; Onasch, T.B.; Jayne, J.T.; Kolb, C.E.; Worsnop, D.R. Measurements of morphology changes of fractal soot particles using coating and denuding experiments: Implications for optical absorption and atmospheric lifetime. Aerosol Sci. Technol. 2007, 41, 734–750. [Google Scholar] [CrossRef]
- Weingartner, E.; Burtscher, H.; Baltensperger, U. Hygroscopic properties of carbon and diesel soot particles. Atmos. Environ. 1997, 31, 2311–2327. [Google Scholar] [CrossRef]
- Borm, P.; Klaessig, F.C.; Landry, T.D.; Moudgil, B.; Pauluhn, J.; Thomas, K.; Trottier, R.; Wood, S. Research strategies for safety evaluation of nanomaterials, part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 2006, 90, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Pruppacher, H.R.; Jaenicke, R. The processing of water vapor and aerosols by atmospheric clouds, a global estimate. Atmos. Res. 1995, 38, 283–295. [Google Scholar] [CrossRef]
- Desboeufs, K.V.; Losno, R.; Colin, J.L. Factors influencing aerosol solubility during cloud processes. Atmos. Environ. 2001, 35, 3529–3537. [Google Scholar] [CrossRef]
- Spokes, L.J.; Jickells, T.D.; Lim, B. Solubilisation of aerosol trace metals by cloud processing: A laboratory study. Geochim. Cosmochim. Acta 1994, 58, 3281–3287. [Google Scholar] [CrossRef]
- Kaptay, G. On the size and shape dependence of the solubility of nano-particles in solutions. Int. J. Pharm. 2012, 430, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Mihranyana, A.; Strømme, M. Solubility of fractal nanoparticles. Surf. Sci. 2007, 601, 315–319. [Google Scholar] [CrossRef]
- Quadros, M.E.; Marr, L.C. Environmental and Human Health Risks of Aerosolized Silver Nanoparticles. J. Air Waste Manag. Assoc. 2010, 60, 770–781. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.D.; Lopez, R.; Meyer, H.M., III; Feldman, L.C.; Haglund, R.F., Jr. Rapid tarnishing of silver nanoparticles in ambient laboratory air. Appl. Phys. B 2005, 80, 915–921. [Google Scholar] [CrossRef]
- Adeleye, A.S.; Keller, A.A.; Miller, R.J.; Lenihan, H.S. Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. J. Nanopart. Res. 2013, 15, 1–18. [Google Scholar] [CrossRef]
- Xia, T.; Kovochich, M.; Liong, M.; Madler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121–2134. [Google Scholar] [CrossRef] [PubMed]
- Kadish, K.; Ruoff, R. Fullerenes: Chemistry, Physics, and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2000; Available online: https://books.google.de/books?hl=de&lr=&id=SQRugQM4p9QC&oi=fnd&pg=PR7&dq=Kadish,+K.,+and+R.+Ruoff+.+2000.+Fullerenes:+Chemistry,+physics,+and+technology&ots=OwZCpaA5h_&sig=2Zy7vWWZ1iZbpTCIq4902e6uelg#v=onepage&q=solubility&f=false (accessed on 30 September 2016).
- Geckeler, K.E.; Premkumar, T. Carbon nanotubes: Are they dispersed or dissolved in liquids? Nanoscale Res. Lett. 2011, 6, X1–X3. [Google Scholar] [CrossRef] [PubMed]
- Klaine, S.J.; Alvarez, P.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hussein, T.; Hruška, A.; Dohányosová, P.; Džumbová, L.; Hemerka, J.; Kulmala, M.; Smolík, J. Deposition rates on smooth surfaces and coagulation of aerosol particles inside a test chamber. Atmos. Environ. 2009, 43, 905–914. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, F.; Zhao, J. Size-Resolved Ultrafine Particle Deposition and Brownian Coagulation from Gasoline Vehicle Exhaust in an Environmental Test Chamber. Environ. Sci. Technol. 2015, 49, 12153–12160. [Google Scholar] [CrossRef] [PubMed]
- Lowry, G.V.; Hotze, E.M.; Bernhardt, E.S.; Dionysiou, D.D.; Pedersen, J.A.; Wiesner, M.R.; Xing, B. Environmental Occurrences, Behavior, Fate, and Ecological Effects of Nanomaterials: An Introduction to the Special Series. J. Environ. Qual. 2010, 39, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Tian, X.; Wu, F.; Xing, B. Fate and transport of engineered nanomaterials in the environment. J. Environ. Qual. 2010, 39, 1896–1908. [Google Scholar] [CrossRef] [PubMed]
- Zuberi, B.; Johnson, K.S.; Aleks, G.K.; Molina, L.T.; Molina, M.J.; Laskin, A. Hydrophilic properties of aged soot. Geophys. Res. Lett. 2005, 32, L01807. [Google Scholar] [CrossRef]
- Majestic, B.J.; Erdakos, G.B.; Lewandowsky, M.; Oliver, K.D.; Willis, R.D.; Kleindienst, T.E.; Bhave, P.V. A Review of Selected Engineered Nanoparticles in the Atmosphere: Sources, Transformations, and Techniques for Sampling and Analysis. Int. J. Occup. Environ. Health 2010, 16, 488–507. [Google Scholar] [CrossRef] [PubMed]
- Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E., Jr. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900–6914. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prevot, A.S.H.; Zhang, Q.; Kroll, J.H.; Aiken, A.C. Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.J.; Morris, J.R.; Vejerano, E.P.; Hochella, M.F., Jr.; Marr, L.C. Oxidation of C60 Aerosols by Atmospherically Relevant Levels of O3. Environ. Sci. Technol. 2014, 48, 2706–2714. [Google Scholar] [CrossRef] [PubMed]
- Fortner, J.D.; Kim, D.I.; Boyd, A.M.; Falkner, J.C.; Moran, S.; Colvin, V.L.; Hughes, J.B.; Kim, J.H. Reaction of water-stable C60 aggregates with ozone. Environ. Sci. Technol. 2007, 41, 7497–7502. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Science 2000, 287, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P. Oxygen adsorption on graphite and nanotubes. J. Chem. Phys. 2003, 118, 1003–1006. [Google Scholar] [CrossRef]
- Goldoni, A.; Larciprete, R.; Petaccia, L.; Lizzit, S. Single-Wall Carbon Nanotube Interaction with Gases: Sample Contaminants and Environmental Monitoring. J. Am. Chem. Soc. 2003, 125, 11329–11333. [Google Scholar] [CrossRef] [PubMed]
- Carp, O. Photoinduced reactivity of titanium dioxide. Prog. Solid Stat. Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Hou, W.C.; Jafvert, C.T. Photochemical transformation of aqueous C60 clusters in sunlight. Environ. Sci. Technol. 2008, 43, 362–367. [Google Scholar] [CrossRef]
- Nissenson, P.; Knox, C.J.; Finlayson-Pitts, B.J.; Phillips, L.F.; Dabdub, D. Enhanced photolysis in aerosols: Evidence for important surface effects. Phys. Chem. Chem. Phys. 2006, 8, 4700–4710. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Yin, L.; Lin, S.; Wiesner, M.; Bernhardt, E.; Liu, J. Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J. Phys. Chem. C Nanomater. Interfaces 2011, 115, 4425–4432. [Google Scholar] [CrossRef]
- Wiesner, M.; Lowry, G.; Alvarez, P.; Dionysiou, D.; Bisawas, P. Assessing the role of manufactured nanomaterials. Environ. Sci. Technol. 2006, 40, 4336–4345. [Google Scholar] [CrossRef] [PubMed]
- Egerton, T.A.; Mattinson, J.A. Comparison of photooxidation and photoreduction reactions on TiO2 nanoparticles. J. Photochem. Photobiol. A Chem. 2007, 186, 115–120. [Google Scholar] [CrossRef]
- Chen, L.X.; Rajh, T.; Wang, Z.; Thurnauer, M.C. XAFS studies of surface structures of TiO2 nanoparticles and photocatalytic reduction of metal ions. J. Phys. Chem. B 1997, 101, 10688–10697. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Ndour, M.; Conchon, P.; D’Anna, B.; Ka, O.; George, C. Photochemistry of mineral dust surface as a potential atmospheric renoxification process. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Chen, H.; Nanayakkara, C.E.; Grassian, V.H. Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 2012, 112, 5919–5948. [Google Scholar] [CrossRef] [PubMed]
- Henderson, M.A. A surface science perspective on photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297. [Google Scholar] [CrossRef]
- Tatsuma, T.; Tachibana, S.I.; Miwa, T.; Tryk, D.A.; Fujishima, A. Remote bleaching of methylene blue by UV-irradiated TiO2 in the gas phase. J. Phys. Chem. B 1999, 103, 8033–8035. [Google Scholar] [CrossRef]
- Daniels, S.L. On the qualities of the air as affected by radiant energies (photocatalytic ionization processes for remediation of indoor environments). J. Environ. Eng. Sci. 2007, 6, 329–342. [Google Scholar] [CrossRef]
- Nanayakkara, C.E.; Larish, W.A.; Grassian, V.H. Titanium Dioxide Nanoparticle Surface Reactivity with Atmospheric Gases, CO2, SO2, and NO2: Roles of Surface Hydroxyl Groups and Adsorbed Water in the Formation and Stability of Adsorbed Products. J. Phys. Chem. C 2014, 118, 23011–23021. [Google Scholar] [CrossRef]
- Rubasinghege, G.; Elzey, S.; Baltrusaitis, J.; Jayaweera, P.M.; Grassian, V.H. Reactions on atmospheric dust particles: Surface photochemistry and size-dependent nanoscale redox chemistry. J. Phys. Chem. Lett. 2010, 1, 1729–1737. [Google Scholar] [CrossRef]
- Bedjanian, Y.; El Zein, A. Interaction of NO2 with TiO2 Surface under UV Irradiation: Products Study. J. Phys. Chem. A 2012, 116, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Kebede, M.A.; Varner, M.E.; Scharko, N.K.; Gerber, R.B.; Raff, J.D. Photooxidation of Ammonia on TiO2 as a Source of NO and NO2 under Atmospheric Conditions. J. Am. Chem. Soc. 2013, 135, 8606–8615. [Google Scholar] [CrossRef] [PubMed]
- Monge, M.E.; George, C.; D’Anna, B.; Doussin, J.F.; Jammoul, A.; Wang, J.; Mellouki, A. Ozone formation from illuminated titanium dioxide surfaces. J. Am. Chem. Soc. 2010, 132, 8234–8235. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Stanier, C.O.; Young, M.A.; Grassian, V.H. A kinetic study of ozone decomposition on illuminated oxide surfaces. J. Phys. Chem. A 2011, 115, 11979–11987. [Google Scholar] [CrossRef] [PubMed]
- Pekney, N.J.; Davidson, C.I.; Bein, K.J.; Wexler, A.S.; Johnston, M.V. Identification of sources of atmospheric PM at the Pittsburgh Supersite, Part I: Single particle analysis and filter-based positive matrix factorization. Atmos. Environ. 2006, 40, 411–423. [Google Scholar] [CrossRef]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; Von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Niu, J.; Zhang, W.; Zhang, L.; Shang, E. Influence of aqueous media on the ROS-mediated toxicity of ZnO nanoparticles toward green fluorescent protein-expressing Escherichia coli under UV-365 irradiation. Langmuir 2014, 30, 2852–2862. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, N.; Nishi, C.; Li, F.M.; Ikada, Y. Photo-induced cytotoxicity of water-soluble fullerene. Fuller Sci. Technol. 1996, 4, 1–19. [Google Scholar] [CrossRef]
- Sakai, A.; Yamakoshi, Y.; Miyata, N. Visible light irradiation of [60] fullerene causes killing and initiation of transformation in BALB/3T3 cells. Fuller Sci. Technol. 1999, 7, 743–756. [Google Scholar] [CrossRef]
- Misawa, M.; Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under X-ray and UV irradiations. Nanomedicine 2011, 7, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Heckert, E.G.; Karakoti, A.S.; Seal, S.; Self, W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709. [Google Scholar] [CrossRef] [PubMed]
- Patakfalvi, R.; Diaz, D.; Velasco-Arias, D.; Rodriguez-Gattorno, G.; Santiago-Jacinto, P. Synthesis and direct interactions of silver colloidal nanoparticles with pollutant gases. Colloid Polym. Sci. 2008, 286, 67–77. [Google Scholar] [CrossRef]
- Kerminen, V.-M.; Paramonov, M.; Anttila, T.; Riipinen, I.; Fountoukis, C.; Korhonen, H.; Asmi, E.; Laakso, L.; Lihavainen, H.; Swietlicki, E.; et al. Cloud condensation nuclei production associated with atmospheric nucleation: A synthesis based on existing literature and new results. Atmos. Chem. Phys. 2012, 12, 12037–12059. [Google Scholar] [CrossRef]
- Tsai, Y.I. Atmospheric visibility trends in an urban area in Taiwan 1961–2003. Atmos. Environ. 2005, 39, 5555–5567. [Google Scholar] [CrossRef]
- Malm, W.C.; Day, D.E. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos. Environ. 2001, 35, 2845–2860. [Google Scholar] [CrossRef]
- Tang, I.N.; Wong, W.T.; Munkelwitz, H.R. The relative importance of atmospheric sulfates and nitrates in visibility reduction. Atmos. Environ. 1981, 15, 2463–2471. [Google Scholar]
- Waggoner, A.P.; Weiss, R.E.; Ahlquist, N.C.; Covert, D.S.; Will, S.; Charlson, R.J. Optical characteristics of atmospheric aerosols. Atmos. Environ. 1981, 15, 1891–1909. [Google Scholar] [CrossRef]
- ARIA Database, Accident N°43049, Rejet de Noir de Carbone par une Usine de Pneumatiques. Available online: http://www.aria.developpement-durable.gouv.fr (accessed on 2 May 2017).
- Le, H.-D.; Lacome, J.-M.; Vignes, A.; Debray, B.; Truchot, B.; Fede, P.; Climent, E. A few fundamental aspects related to the modeling of an accidental massive jet release of nanoparticles. Chem. Eng. Trans. 2016, 48, 25–30. [Google Scholar]
- Le, H.-D.; Lacome, J.-M.; Vignes, A.; Debray, B.; Truchot, B.; Fede, P.; Climent, E. Modelling of test case particle-laden jet with NEPTUNE/CFD. In Proceedings of the 14th Workshop on Two-Phase Flow Predictions, Halle, Germany, 7–10 September 2015. [Google Scholar]
- Ketzel, M.; Berkowicz, R. Modelling the fate of ultrafine particles from exhaust pipe to rural background: An analysis of time scales for dilution, coagulation and deposition. Atmos. Environ. 2004, 38, 2639–2652. [Google Scholar] [CrossRef]
- Karl, M.; Kukkonen, J.; Keuken, M.P.; Lützenkirchen, S.; Pirjola, L.; Hussein, T. Modeling and measurements of urban aerosol processes on the neighborbood scale in Rotterdam, Oslo and Helsinki. Atmos. Chem. Phys. 2016, 16, 4817–4835. [Google Scholar] [CrossRef]
- Nikolova, I.; Janssen, S.; Vos, P.; Berghmans, P. Modelling the Mixing of Size Resolved Traffic Induced and Background Ultrafine Particles from an Urban Street Canyon to Adjacent Backyards. Aerosol Air Qual. Res. 2014, 14, 145–155. [Google Scholar] [CrossRef]
- Choi, W.; Paulson, S.E. Closing the UFP number concentration budget at road-to-ambient scale: Implications for particle dynamics. Aerosol Sci. Technol. 2016, 50, 448–461. [Google Scholar] [CrossRef]
- Keuken, M.P.; Moerman, M.; Zandveld, P.; Henzing, J.S. Total and size-resolved particle number and black carbon concentrations near an industrial area. Atmos. Environ. 2015, 122, 196–205. [Google Scholar] [CrossRef]
- Keuken, M.P.; Moerman, M.; Zandveld, P.; Henzing, J.S.; Hoek, G. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol Airport (the Netherland). Atmos. Environ. 2015, 104, 132–142. [Google Scholar] [CrossRef]
- Petroff, A.; Zhang, L. Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models. Geosci. Model. Dev. 2010, 3, 753–769. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, S.; Padro, J.; Barrie, L. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ. 2001, 35, 549–560. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, Y. A new parameterization of particle dry deposition over rough surfaces. Atmos. Chem. Phys. 2014, 14, 12429–12440. [Google Scholar] [CrossRef]
- Manders-Groot, A.M.M.; Segers, A.J.; Jonkers, S. LOTOS-EUROS v2.0 Reference Guide; TNO Report TNO2016 R10898; TNO: Utrecht, The Netherlands, 2016. [Google Scholar]
- Andronache, C.; Grönholm, T.; Laakso, L.; Phillips, V.; Venäläinen, A. Scavenging of ultrafine particles by rainfall at a boreal site: Observations and model estimations. Atmos Chem Phys 2006, 6, 4739–4754. [Google Scholar] [CrossRef]
- Laakso, L.; Grönholm, T.; Rannik, Ü.; Kosmale, M.; Fiedler, V.; Vehkamäki, H.; Kulmala, M. Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos. Environ. 2003, 37, 3605–3613. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Moran, M.D. Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain. Atmos. Chem. Phys. 2010, 10, 5685–5705. [Google Scholar] [CrossRef]
- Gottschalk, F.; Sonderer, T.; Scholz, R.W.; Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216–9222. [Google Scholar] [CrossRef] [PubMed]
- Meesters, J.A.J.; Koelmands, A.A.; Quik, J.T.K.; Hendriks, A.J.; Van de Meent, D. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: Model definition and evaluation. Environ. Sci. Technol. 2014, 48, 5726–5736. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, F.; Sun, T.Y.; Nowack, B. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Pollut. 2013, 181, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Karl, M.; Gross, A.; Pirjola, L.; Leck, C. A new flexible multicomponentmodel for the study of aerosol dynamics in the marine boundary layer. Tellus B 2011, 63, 1001–1025. [Google Scholar] [CrossRef]
- Korhonen, H.; Lehtinen, K.E.J.; Kulmala, M. Multicomponent aerosol dynamics model UHMA: Model development and validation. Atmos. Chem. Phys. 2004, 4, 757–771. [Google Scholar] [CrossRef]
- Vignati, E.; Wilson, J.; Stier, P. M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Kokkola, H.; Korhonen, H.; Lehtinen, K.E.J.; Makkonen, R.; Asmi, A.; Järvenoja, S.; Anttila, T.; Partanen, A.-I.; Kulmala, M.; Järvinen, H.; et al. SALSA—A Sectional Aerosol module for Large Scale Applications. Atmos. Chem. Phys. 2008, 8, 2469–2483. [Google Scholar] [CrossRef]
- Fountoukis, C.; Riipinen, I.; Denier Van Der Gon, H.A.C.; Charalampidis, P.E.; Pilinis, C.; Wiedensohler, A.; Dowd, C.O.; Putaud, J.P.; Moerman, M.; Pandis, S.N. Simulating ultrafine particle formation in Europe using a regional CTM: Contribution of primary emissions versus secondary formation to aerosol number concentrations. Atmos. Chem. Phys. 2012, 12, 8663–8677. [Google Scholar] [CrossRef]
- Kukkonen, J.; Karl, M.; Keuken, M.P.; Denier van der Gon, H.A.C.; Denby, B.R.; Singh, V.; Douros, J.; Manders, A.; Samaras, Z.; Moussiopoulos, N.; et al. Modelling the dispersion of particle numbers in five European cities. Geosci. Model. Dev. 2016, 9, 451–478. [Google Scholar] [CrossRef]
- Riipinen, I.; Pierce, J.R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; et al. Organic condensation: A vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos. Chem. Phys. 2011, 11, 3865–3878. [Google Scholar] [CrossRef]
- Pierce, J.R.; Riipinen, I.; Kulmala, M.; Ehn, M.; Petäjä, T.; Junninen, H.; Worsnop, D.R.; Donahue, N.M. Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmos. Chem. Phys. 2011, 11, 9019–9036. [Google Scholar] [CrossRef]
- Kranenburg, R.; Segers, A.J.; Hendriks, C.; Schaap, M. Source apportionment using LOTOS-EUROS: Module description and evaluation. Geosci. Model. Dev. 2013, 6, 721–733. [Google Scholar] [CrossRef]
Process Type | Process | Production Conditions | Emissivity |
---|---|---|---|
Physical | Electrospinning | Closed | H |
processes | Gas phase processes based on Heating and fast cooling | Controlled atmosphere | L |
Laser pyrolysis | Controlled atmosphere | L | |
Spray drying | Atmospheric conditions | H | |
Chemical processes | Liquid phase processes: precipitation, sol gel, exfoliation, sonochemistry | ENM produced as liquid suspension; in case of drying, it can be emissive | H |
Chemical vapor deposition | Controlled atmosphere | L | |
Flame synthesis | Atmospheric conditions | H | |
Hot plasma synthesis | Controlled atmosphere | L | |
Mechanical | High energy milling | Atmospheric conditions | H |
processes | Severe plastic deformation | Atmospheric conditions | H |
Shock wave processes | Atmospheric conditions | H |
Generic Name | Tonnage Band |
---|---|
Carbon black | >100,000 t |
Silicon dioxide | >100,000 t |
Calcium carbonate | 10,000–100,000 t |
Titanium dioxide | 10,000–100,000 t |
Boehmite (Al(OH)O) | 1000–10,000 t |
Vinylidene chloride copolymer | 1000–10,000 t |
Silicic acid, magnesium salt | 1000–10,000 t |
Aluminium oxide | 1000–10,000 t |
Vinyl polychloride | 1000–10,000 t |
Mixture of cerium dioxide and zirconium dioxide | 1000 10,000 t |
Particle Size | Desert | Grass | Forest |
---|---|---|---|
330 nm | 10−4–1.5 × 10−3 | 10−4–2.5 × 10−3 | 10−4–5 × 10−3 |
700 nm | 10−4–10−3 | 10−4–1.5 × 10−3 | 10−4–3 × 10−3 |
3 µm | 3 × 10−4–8 × 10−4 | 3 × 10−4–1 × 10−3 | 3 × 10−4–3 × 10−3 |
5µm | 10−3–2 × 10−3 | 10−3–1.5 × 10−3 | 10−3–0.013 |
8 µm | 2 × 10−3–7.5 × 10−3 | 2 × 10−3–4 × 10−3 | 2 × 10−3–0.065 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
John, A.C.; Küpper, M.; Manders-Groot, A.M.M.; Debray, B.; Lacome, J.-M.; Kuhlbusch, T.A.J. Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere. Atmosphere 2017, 8, 84. https://doi.org/10.3390/atmos8050084
John AC, Küpper M, Manders-Groot AMM, Debray B, Lacome J-M, Kuhlbusch TAJ. Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere. Atmosphere. 2017; 8(5):84. https://doi.org/10.3390/atmos8050084
Chicago/Turabian StyleJohn, Astrid C., Miriam Küpper, Astrid M.M. Manders-Groot, Bruno Debray, Jean-Marc Lacome, and Thomas A.J. Kuhlbusch. 2017. "Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere" Atmosphere 8, no. 5: 84. https://doi.org/10.3390/atmos8050084
APA StyleJohn, A. C., Küpper, M., Manders-Groot, A. M. M., Debray, B., Lacome, J. -M., & Kuhlbusch, T. A. J. (2017). Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere. Atmosphere, 8(5), 84. https://doi.org/10.3390/atmos8050084