The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures
Abstract
:1. Introduction
2. Cloud Radiative Effects in Tropics
3. Radiative–Convective Model and Simulations
4. Impact of Cloud Radiative Effects
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Highwood, E.J.; Hoskins, B.J. The tropical tropopause. Q. J. R. Meteorol. Soc. 1998, 124, 1579–1604. [Google Scholar] [CrossRef]
- Folkins, I.; Loewenstein, M.; Podolske, J.; Oltmans, S.J.; Proffitt, M. A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J. Geophys. Res. Atmos. 1999, 104, 22095–22102. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Gettelman, A. Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett. 2001, 28, 2799–2802. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; de Forster, P.M.; Fujiwara, M.; Fu, Q.; Vömel, H.; Gohar, L.K.; Johanson, C.; Ammerman, M. Radiation balance of the tropical tropopause layer. J. Geophys. Res. 2004, 109, 7103. [Google Scholar] [CrossRef]
- Fu, Q.; Hu, Y.; Yang, Q. Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations. Geophys. Res. Lett. 2007, 34, L14813. [Google Scholar] [CrossRef]
- Fueglistaler, S.; Dessler, A.E.; Dunkerton, T.J.; Folkins, I.; Fu, Q.; Mote, P.W. Tropical tropopause layer. Rev. Geophys. 2009, 47, RG1004. [Google Scholar] [CrossRef]
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Dessler, A.E.; Schoeberl, M.R.; Wang, T.; Davis, S.M.; Rosenlof, K.H. Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA 2013, 110, 18087–18091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randel, W.J.; Jensen, E.J. Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci. 2013, 6, 169–176. [Google Scholar] [CrossRef]
- Brewer, A.W. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q. J. R. Meteorol. Soc. 1949, 75, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-troposphere exchange. Rev. Geophys. 1995, 33, 403. [Google Scholar] [CrossRef]
- Fueglistaler, S.; Haynes, P.H. Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res. 2005, 110, D24108. [Google Scholar] [CrossRef]
- Ding, Q.; Fu, Q. A warming tropical central Pacific dries the lower stratosphere. Clim. Dyn. 2018, 50, 2813–2827. [Google Scholar] [CrossRef]
- Thuburn, J.; Craig, G.C. On the temperature structure of the tropical substratosphere. J. Geophys. Res. 2002, 107, 4017. [Google Scholar] [CrossRef]
- Birner, T. Residual Circulation and Tropopause Structure. J. Atmos. Sci. 2010, 67, 2582–2600. [Google Scholar] [CrossRef]
- Birner, T.; Charlesworth, E.J. On the relative importance of radiative and dynamical heating for tropical tropopause temperatures. J. Geophys. Res. Atmos. 2017, 122, 6782–6797. [Google Scholar] [CrossRef]
- Sinha, A.; Shine, K.P. A One-Dimensional study of possible cirrus cloud feedbacks. J. Clim. 1994, 7, 158–173. [Google Scholar] [CrossRef]
- Thuburn, J.; Craig, G.C. Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci. 2000, 57, 17–28. [Google Scholar] [CrossRef]
- Corti, T.; Luo, B.P.; Peter, T.; Vömel, H.; Fu, Q. Mean radiative energy balance and vertical mass fluxes in the equatorial upper troposphere and lower stratosphere. Geophys. Res. Lett. 2005, 32, L06802. [Google Scholar] [CrossRef]
- Corti, T.; Luo, B.P.; Fu, Q.; Vömel, H.; Peter, T. The impact of cirrus clouds on tropical troposphere-to-stratosphere transport. Atmos. Chem. Phys. 2006, 6, 2539–2547. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Fu, Q.; Hu, Y. Radiative impacts of clouds in the tropical tropopause layer. J. Geophys. Res. 2010, 115, D00H12. [Google Scholar] [CrossRef]
- Lin, L.; Fu, Q.; Zhang, H.; Su, J.; Yang, Q.; Sun, Z. Upward mass fluxes in tropical upper troposphere and lower stratosphere derived from radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transf. 2013, 117, 114–122. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Tseng, H.H.; Fu, Q. Tropical tropopause layer cirrus and its relation to tropopause. J. Quant. Spectrosc. Radiat. Transf. 2017, 188, 118–131. [Google Scholar] [CrossRef]
- Austin, R.T.; Heymsfield, A.J.; Stephens, G.L. Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res. 2009, 114, D00A23. [Google Scholar] [CrossRef]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. spatial and temporal distribution of clouds observed by MODIS onboard the terra and aqua satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Heymsfield, A.; Winker, D.; Avery, M.; Vaughan, M.; Diskin, G.; Deng, M.; Mitev, V.; Matthey, R. Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0°C to −86 °C: Implications for spaceborne lidar retrievals. J. Appl. Meteorol. Climatol. 2014, 53, 479–505. [Google Scholar] [CrossRef]
- Fueglistaler, S.; Fu, Q. Impact of clouds on radiative heating rates in the tropical lower stratosphere. J. Geophys. Res. 2006, 111, 23202. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Holton, J.R.; Fu, Q. The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett. 2001, 28, 1969–1972. [Google Scholar] [CrossRef] [Green Version]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Wee, T.K.; Sokolovskiy, S.; Rocken, C.; Schreiner, W.; Hunt, D.; Anthes, R. Inversion and error estimation of GPS radio occultation data. J. Meteorol. Soc. 2004, 82, 507–531. [Google Scholar] [CrossRef]
- Anthes, R.A.; Bernhardt, P.A.; Chen, Y.; Cucurull, L.; Dymond, K.F.; Ector, D.; Healy, S.B.; Ho, S.-P.; Hunt, D.C.; Kuo, Y.-H.; et al. The COSMIC/FORMOSAT-3 mission: Early results. Bull. Am. Meteorol. Soc. 2008, 89, 313–334. [Google Scholar] [CrossRef]
- He, W.; Ho, S.; Chen, H.; Zhou, X.; Hunt, D.; Kuo, Y.H. Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys. Res. Lett. 2009, 36, L17807. [Google Scholar] [CrossRef]
- Wang, B.R.; Liu, X.Y.; Wang, J.K. Assessment of COSMIC radio occultation retrieval product using global radiosonde data. Atmos. Meas. Tech. 2013, 6, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Kishore, P.; Namboothiri, S.P.; Jiang, J.H.; Sivakumar, V.; Igarashi, K. Global temperature estimates in the troposphere and stratosphere: A validation study of COSMIC/FORMOSAT-3 measurements. Atmos. Chem. Phys. 2009, 9, 897–908. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N. On the correlated k -Distribution method for radiative transfer in Nonhomogeneous Atmospheres. J. Atmos. Sci. 1992, 49, 2139–2156. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N. Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci. 1993, 50, 2008–2025. [Google Scholar] [CrossRef]
- Fu, Q. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Clim. 1996, 9, 2058–2082. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N.; Cribb, M.C.; Charlock, T.P.; Grossman, A. Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci. 1997, 54, 2799–2812. [Google Scholar] [CrossRef]
- Fu, Q.; Yang, P.; Sun, W.B. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Clim. 1998, 11, 2223–2237. [Google Scholar] [CrossRef]
- Kratz, D.P.; Rose, F.G. Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transf. 1999, 61, 83–95. [Google Scholar] [CrossRef]
- Rose, F.; Charlock, T.P. New Fu-Liou code tested with ARM raman lidar and CERES in pre-CALIPSO exercise. In Proceedings of the 11th Conference on Atmospheric Radiation, Odgen, UT, USA, 3 June 2002. [Google Scholar]
- Fu, Q. A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci. 2007, 64, 4140–4150. [Google Scholar] [CrossRef]
- Liou, K.N.; Fu, Q.; Ackerman, T.P. A simple formulation of the Delta-Four-Stream approximation for radiative transfer parameterizations. J. Atmos. Sci. 1988, 45, 1940–1948. [Google Scholar] [CrossRef]
- Tobin, D.C.; Best, F.A.; Brown, P.D.; Clough, S.A.; Dedecker, R.G.; Ellingson, R.G.; Garcia, R.K.; Howell, H.B.; Knuteson, R.O.; Mlawer, E.J. Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26 μm. J. Geophys. Res. Atmos. 1999, 104, 2081–2092. [Google Scholar] [CrossRef]
- Johnson, R.H.; Rickenbach, T.M.; Rutledge, S.A.; Ciesielski, P.E.; Schubert, W.H. Trimodal characteristics of tropical convection. J. Clim. 1999, 12, 2397–2418. [Google Scholar] [CrossRef]
- Haynes, J.M.; Stephens, G.L. Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Jiang, J.H.; Vane, D.G.; Stephens, G.L. Observed vertical structure of tropical oceanic clouds sorted in large-scale regimes. Geophys. Res. Lett. 2008, 35, L24704. [Google Scholar] [CrossRef]
- Fu, Q. Bottom up in the tropics. Nat. Clim. Chang. 2013, 3, 957–958. [Google Scholar] [CrossRef]
- Tseng, H.H.; Fu, Q. Temperature control of the variability of tropical tropopause layer cirrus clouds. J. Geophys. Res. Atmos. 2017, 122, 11062–11075. [Google Scholar] [CrossRef]
- Morcrette, J.J. Impact of changes to the radiation transfer parameterizations plus cloud optical. properties in the ECMWF model. Mon. Weather Rev. 1990, 118, 847–873. [Google Scholar] [CrossRef]
- Zhong, W.; Haigh, J.D. Improved broadband emissivity parameterization for water vapor cooling rate calculations. J. Atmos. Sci. 1995, 52, 124–138. [Google Scholar] [CrossRef]
- Zhong, W.; Toumi, R.; Haigh, J.D. Climate forcing by stratospheric ozone depletion calculated from observed temperature trends. Geophys. Res. Lett. 1996, 23, 3183–3186. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Mlawer, E.J.; Clough, S.A.; Morcrette, J.J. Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res. Atmos. 2000, 105, 14873–14890. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Fu, Q.; Austin, J.; Gettelman, A.; Li, F.; Vömel, H. Observationally derived and general circulation model simulated tropical stratospheric upward mass fluxes. J. Geophys. Res. 2008, 113, D00B07. [Google Scholar] [CrossRef]
- Thompson, A.M.; Witte, J.C.; Smit, H.G.J.; Oltmans, S.J.; Johnson, B.J.; Kirchhoff, V.W.J.H.; Schmidlin, F.J. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2004 tropical ozone climatology: 3. Instrumentation, station-to-station variability, and evaluation with simulated flight profiles. J. Geophys. Res. 2007, 112, D03304. [Google Scholar] [CrossRef]
- Russell, J.M.; Gordley, L.L.; Park, J.H.; Drayson, S.R.; Hesketh, W.D.; Cicerone, R.J.; Tuck, A.F.; Frederick, J.E.; Harries, J.E.; Crutzen, P.J. The halogen occultation experiment. J. Geophys. Res. 1993, 98, 10777. [Google Scholar] [CrossRef]
- McClatchey, R.A.; Fenn, R.W.; Selby, J.E.A.; Volz, F.E.; Garing, J.S. Optical Properties of the Atmosphere; Air Force Rep. AFCRL-71-0279; Air Force Geophysics Laboratory: Bedford, MA, USA, 1971. [Google Scholar]
- Dinh, T.; Fueglistaler, S. Cirrus, transport, and mixing in the tropical upper troposphere. J. Atmos. Sci. 2014, 71, 1339–1352. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Smith, M.; Yang, Q. The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures. Atmosphere 2018, 9, 377. https://doi.org/10.3390/atmos9100377
Fu Q, Smith M, Yang Q. The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures. Atmosphere. 2018; 9(10):377. https://doi.org/10.3390/atmos9100377
Chicago/Turabian StyleFu, Qiang, Maxwell Smith, and Qiong Yang. 2018. "The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures" Atmosphere 9, no. 10: 377. https://doi.org/10.3390/atmos9100377
APA StyleFu, Q., Smith, M., & Yang, Q. (2018). The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures. Atmosphere, 9(10), 377. https://doi.org/10.3390/atmos9100377