Numerical Simulation Study of Winter Pollutant Transport Characteristics over Lanzhou City, Northwest China
Abstract
:1. Introduction
2. Numerical Simulation
2.1. WRF Model
2.2. FLEXPART Model
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, J.; Gong, S.; Yu, Y.; Yu, L.; Wu, L.; Mao, H.; Song, C.; Zhao, S.; Liu, H.; Li, X.; et al. Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ. Pollut. 2017, 223, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; He, J.; Wu, L.; Jin, T.; Chen, X.; Li, R.; Ren, P.; Zhang, L.; Mao, H. Health burden attributable to ambient PM2.5 in China. Environ. Pollut. 2017, 223, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Avnery, S.; Mauzerall, D.L.; Liu, J.; Horowitz, L.W. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos. Environ. 2011, 45, 2284–2296. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, C.S.; Zhang, Q.; Deng, Z.Z.; Huang, M.Y.; Ma, X.C. Aircraft study of Mountain Chimney Effect of Beijing, China. J. Geophys. Res. 2009, 114, D08306. [Google Scholar] [CrossRef]
- Crippa, M.; Canonaco, F.; Slowik, J.G.; El Haddad, I.; DeCarlo, P.F.; Mohr, C.; Heringa, M.F.; Chirico, R.; Marchand, N.; Temime-Roussel, B.; et al. Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment. Atmos. Chem. Phys. 2013, 13, 8411–8426. [Google Scholar] [CrossRef]
- He, J.; Wu, L.; Mao, H.; Li, R. Impacts of meteorological conditions on air quality in urban Langfang, Hebei Province. Res. Environ. Sci. 2016, 29, 791–799. (In Chinese) [Google Scholar]
- Vivanco, M.; Theobald, M.; García-Gómez, H.; Garrido, J.; Prank, M.; Aas, W.; Adani, M.; Alyuz, U.; Andersson, C.; Bellasio, R.; et al. Modeled deposition of nitrogen and sulfur in Europe estimated by14 air quality model systems: evaluation, effects of changes in emissions and implications for habitat protection. Atmos. Chem. Phys. 2018, 18, 10199–10218. [Google Scholar] [CrossRef]
- Saikawa, E.; Kim, H.; Zhong, M.; Avramov, A.; Zhao, Y.; Janssens-Maenhout, G.; Kurokawa, J.; Klimont, Z.; Wagner, F.; Naik, V.; et al. Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China. Atmos. Chem. Phys. 2017, 17, 6393–6421. [Google Scholar] [CrossRef] [Green Version]
- Ning, J.; Gao, J.; Zheng, J.; Jia, N.; Xian, Z.; Li, X.; Mao, Y.; Sheng, L.; Song, Y.; Zeng, Y.; et al. China Statistical Yearbook; China Statistics Press: Beijing, China, 2017. Available online: http://www.stats.gov.cn/tjsj/ndsj/2017/indexch.htm (accessed on 1 August 2018).
- Shi, C.; Yuan, R.; Wu, B.; Meng, Y.; Zhang, H.; Zhang, H.Q.; Gong, Z. Meteorological conditions conducive to PM2.5 pollution in winter 2016/2017 in the Western Yangtze River Delta, China. Sci. Total Environ. 2018, 642, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yu, Y.; Chen, J.; Liu, N.; Zhao, S. Simulation study of the influence of vegetation fraction on meteorological condition in Lanzhou using WRF model. Plateau Meteorol. 2012, 31, 1611–1621. (In Chinese) [Google Scholar]
- Wang, S.; Feng, X.; Zeng, X.; Ma, Y.; Shang, K. A study on variations of concentrations of particulate matter with different sizes in Lanzhou, China. Atmos. Environ. 2009, 43, 2823–2828. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Q. Atmosphere pollution mechanism along with prevention and cure countermeasure of the Lanzhou hollow basin. China Environ. Sci. 1999, 19, 119–122. (In Chinese) [Google Scholar]
- He, J.; Yu, Y.; Xie, Y.; Mao, H.; Wu, L.; Liu, N.; Zhao, S. Numerical model-based artificial neural network model and its application for quantifying impact factors of urban air quality. Water Air Soil Poll. 2016, 227, 235. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. A study of the relationship between air pollutants and inversion in the PBL over the city of Lanzhou. Adv. Atmos. Sci. 2011, 28, 879–886. [Google Scholar] [CrossRef]
- An, X.; Zuo, H.; Chen, L. Atmospheric environmental capacity of SO2 in winter over Lanzhou in China: A case study. Adv. Atmos. Sci. 2007, 24, 688–699. [Google Scholar] [CrossRef]
- Yu, Y.; He, J.; Zhao, S.; Liu, N.; Chen, J.; Mao, H.; Wu, L. Numerical simulation of the impact of reforestation on winter meteorology and environment in a semi-arid urban valley, Northwestern China. Sci. Total Environ. 2016, 569–570, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Yu, Y.; He, J.; Zhao, S. Integrated modeling of urban-scale pollutant transport: Application in a semi-arid urban valley, Northwestern China. Atmos. Pollut. Res. 2013, 4, 306–314. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Hong, S.; Lim, J. The WRF Single-Moment 6-Class Microphysics Scheme. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Kain, J. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. Clim. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Mlawer, E.; Taubman, S.; Brown, P.; Iacono, M.; Clough, S. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Hong, S.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Lo, J.; Yang, Z.; Pielke, R. Assessment of three dynamical climate downscaling methods using the weather research and forecasting (WRF) model. J. Geophys. Res. 2008, 113, D09112. [Google Scholar] [CrossRef]
- Heikkilä, U.; Sandvik, A.; Sorteberg, A. Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim. Dyn. 2011, 37, 1551–1564. [Google Scholar] [CrossRef] [Green Version]
- Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, D.; Seibert, P.; Angevine, W.; Evan, S.; Dingwell, A.; Fast, J.; et al. The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geosci. Model Dev. 2013, 6, 1889–1904. [Google Scholar] [CrossRef] [Green Version]
- Brioude, J.; Angevine, W.; McKeen, S.; Hsie, E. Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain. Geosci. Model Dev. 2012, 5, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
Weather | Typical Transport Channels | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
East Valley Release | West Valley Release | |||||||||
SW | W | S | SE | NE | SW | W | S | SE | NE | |
CT1 | 0.549 | 0.247 | 0.336 | 1.168 | 0.556 | 1.081 | 0.436 | 0.150 | 0.440 | 0.472 |
CT2 | 0.551 | 0.239 | 0.207 | 1.338 | 0.480 | 0.931 | 0.447 | 0.118 | 0.453 | 0.495 |
CT3 | 0.675 | 0.272 | 0.611 | 1.022 | 0.462 | 1.411 | 0.506 | 0.245 | 0.303 | 0.251 |
CT4 | 0.799 | 0.288 | 0.339 | 1.047 | 0.335 | 1.412 | 0.571 | 0.179 | 0.241 | 0.265 |
CT5 | 0.808 | 0.277 | 0.615 | 0.842 | 0.276 | 1.591 | 0.629 | 0.175 | 0.166 | 0.231 |
CT6 | 0.838 | 0.277 | 0.798 | 0.817 | 0.361 | 1.922 | 0.623 | 0.210 | 0.079 | 0.148 |
CT7 | 0.615 | 0.272 | 0.367 | 1.211 | 0.615 | 1.300 | 0.395 | 0.236 | 0.437 | 0.475 |
CT8 | 1.012 | 0.342 | 0.765 | 0.678 | 0.210 | 1.932 | 0.694 | 0.139 | 0.111 | 0.072 |
Mean | 0.733 | 0.277 | 0.493 | 1.107 | 0.413 | 1.441 | 0.543 | 0.180 | 0.279 | 0.300 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Lu, S.; Yu, Y.; Gong, S.; Zhao, S.; Zhou, C. Numerical Simulation Study of Winter Pollutant Transport Characteristics over Lanzhou City, Northwest China. Atmosphere 2018, 9, 382. https://doi.org/10.3390/atmos9100382
He J, Lu S, Yu Y, Gong S, Zhao S, Zhou C. Numerical Simulation Study of Winter Pollutant Transport Characteristics over Lanzhou City, Northwest China. Atmosphere. 2018; 9(10):382. https://doi.org/10.3390/atmos9100382
Chicago/Turabian StyleHe, Jianjun, Shuhua Lu, Ye Yu, Sunling Gong, Suping Zhao, and Chunhong Zhou. 2018. "Numerical Simulation Study of Winter Pollutant Transport Characteristics over Lanzhou City, Northwest China" Atmosphere 9, no. 10: 382. https://doi.org/10.3390/atmos9100382
APA StyleHe, J., Lu, S., Yu, Y., Gong, S., Zhao, S., & Zhou, C. (2018). Numerical Simulation Study of Winter Pollutant Transport Characteristics over Lanzhou City, Northwest China. Atmosphere, 9(10), 382. https://doi.org/10.3390/atmos9100382