Impacts of Pacific SSTs on Atmospheric Circulations Leading to California Winter Precipitation Variability: A Diagnostic Modeling
Abstract
:1. Introduction
2. Data and Methods
3. Large-Scale Circulations Associated with CA Precipitation Variability
3.1. Correlations of Precipitation Variability with Atmospheric/Oceanic Variables
3.2. Dominant EOF Modes of Mid-Tropospheric Geopotential Heights and Their Associated Large-Scale Circulations
4. Development of a Regression Model for CA Winter Precipitation
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borsa, A.A.; Agnew, D.C.; Cayan, D.R. Ongoing drought-induced uplift in the western United States. Science 2014, 345, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-Y.; Hipps, L.; Gillies, R.R.; Yoon, J.-H. Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett. 2014, 41, 3220–3226. [Google Scholar] [CrossRef]
- Seager, R.; Hoerling, M.; Schubert, S.; Wang, H.; Lyon, B.; Kumar, A.; Nakamura, J.; Henderson, N. Causes of the 2011 to 2014 California drought. J. Clim. 2015, 28, 6997–7024. [Google Scholar] [CrossRef]
- Watson, P.A.G.; Weisheimer, A.; Knight, J.R.; Palmer, T.N. The role of the tropical West Pacific in the extreme Northern Hemisphere winter of 2013/2014. J. Geophys. Res. Atmos. 2016, 121, 1698–1714. [Google Scholar] [CrossRef]
- Howitt, R.; Medellin-Azuara, J.; MacEwan, D.; Lund, J.; Sumner, D.A. Economic Analysis of the 2014 Drought for California Agriculture; Center for Watershed Sciences, University of California: Davis, CA, USA, 2014. [Google Scholar]
- Williams, A.P.; Seager, R.; Abatzoglou, J.T.; Cook, B.I.; Smerdon, J.E.; Cook, E.R. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 2015, 42, 6819–6828. [Google Scholar] [CrossRef]
- Swain, D.L.; Tsiang, M.; Haugen, M.; Singh, D.; Charland, A.; Rajaratnam, B.; Diffenbaugh, N.S. The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bull. Am. Meteorol. Soc. 2014, 95, S3–S7. [Google Scholar]
- Wang, H.; Schubert, S. Causes of the extreme dry conditions over California during early 2013 [in “Explaining Extremes of 2013 From a Climate Perspective”]. Bull. Am. Meteorol. Soc. 2014, 95, S7–S11. [Google Scholar] [CrossRef]
- Seager, R.; Henderson, N. On the role of tropical ocean forcing of the persistent North American west coast ridge of winter 2013/14. J. Clim. 2016, 29, 8027–8049. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef]
- Gershunov, A.; Barnett, T. Interdecadal modulation of ENSO teleconnections. Bull. Am. Meteorol. Soc. 1998, 79, 2715–2726. [Google Scholar] [CrossRef]
- McCabe, G.J.; Dettinger, M.D. Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol. 1999, 19, 1399–1410. [Google Scholar] [CrossRef] [Green Version]
- Myoung, B.; Deng, Y. Interannual variability of the cyclone activity along the US Pacific Coast: Influences on the characteristics of winter precipitation in the western US. J. Clim. 2009, 22, 5732–5747. [Google Scholar] [CrossRef]
- Lee, S.-K.; Lopez, H.; Chung, E.-S.; DiNezio, P.; Yeh, W.S.; Wittenberg, A.T. On the fragile relationship between El Niño and California rainfall. Geophys. Res. Lett. 2018, 45, 907–915. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Van Loon, H. Decadal variations in climate associated with the North Atlantic Oscillation. Clim. Chang. 1997, 36, 301–326. [Google Scholar] [CrossRef]
- Kapala, A.H.; Mächel, H.; Flohn, H. Behaviour of the centres of action above the Atlantic since 1881. Part II: Associations with regional climate anomalies. Int. J. Climatol. 1998, 18, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Higgins, R.W.; Leetmaa, A.; Xue, Y.; Barnston, A. Dominant factors influencing the seasonal predictability of US precipitation and surface air temperature. J. Clim. 2000, 13, 3994–4017. [Google Scholar] [CrossRef]
- Shukla, J.; Wallace, J.M. Numerical simulation of the atmospheric response to equatorial Pacific sea surface temperature anomalies. J. Atmos. Sci. 1983, 40, 1613–1630. [Google Scholar] [CrossRef]
- Dettinger, M.; Cayan, D.R. Drought and the California delta—A matter of extremes. San Franc. Estuary Watershed Sci. 2014, 12, 1–6. [Google Scholar] [CrossRef]
- Latif, M.; Barnett, T.P. Causes of decadal climate variability over the North Pacific and North America. Science 1994, 266, 634–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.P.; Comrie, A.C. A winter precipitation ‘dipole’ in the western United States associated with multidecadal ENSO variability. Geophys. Res. Lett. 2004, 31, L09203. [Google Scholar] [CrossRef]
- McCabe, G.J.; Palecki, M.A.; Betancourt, J.L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA 2004, 101, 4136–4141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myoung, B.; Kim, S.H.; Kim, J.; Kafatos, M.C. On the relationship between the North Atlantic Oscillation and early warm season temperatures in the southwestern United States. J. Clim. 2015, 28, 5683–5698. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Branstator, G.W.; Karoly, D.; Kumar, A.; Lau, N.C.; Ropelewski, C. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 1998, 103, 14291–14324. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.M. Decadal trends in North Atlantic Oscillation and relationship to regional temperature and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.D.; Jónsson, T.; Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 1997, 17, 1433–1450. [Google Scholar] [CrossRef]
- Kwon, M.; Jhun, J.-G.; Wang, B.; An, S.-I.; Kug, J.-S. Decadal change in relationship between east Asian and WNP summer monsoons. Geophys. Res. Lett. 2005, 32, L16709. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, T. Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J. Geophys. Res. Atmos. 2014, 119. [Google Scholar] [CrossRef]
- Ding, H.; Greatbatch, R.J.; Latif, M.; Park, W.; Gerdes, R. Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. J. Clim. 2013, 26, 7650–7661. [Google Scholar] [CrossRef]
- Jin, D.; Hameed, S.N.; Huo, L. Recent changes in ENSO teleconnection over the Western Pacific impacts the Eastern China precipitation dipole. J. Clim. 2016, 29, 7587–7598. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.; Rao, A.S.; Weng, H.; Yamagata, T. El Niño Modoki and its teleconnection. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Kao, H.Y.; Yu, J. Contrasting eastern Pacific and central Pacific types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Kug, J.S.; Jin, F.; An, S.I. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Clim. 2009, 22, 1499–1515. [Google Scholar] [CrossRef]
- Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kwon, M.H.; Kirtman, B.P.; Jin, F.F. El Niño in a changing climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.W.; Wang, X.; Wang, C.; Dewitte, B. On the relationship between the North Pacific climate variability and Central Pacific El Nino. J. Clim. 2015, 28, 663–677. [Google Scholar] [CrossRef]
- Lau, K.-M.; Kim, K.-M.; Yang, S. Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Clim. 2000, 13, 2461–2482. [Google Scholar] [CrossRef]
- Lee, S.-E.; Seo, K.-H. The Development of a Statistical Forecast Model for Changma. Weather Forecast. 2013, 28, 1304–1321. [Google Scholar] [CrossRef]
- Wang, B.; Xiang, B.; Lee, J. Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA 2013, 110, 2718–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, S.-Y.; Wang, B.; Xing, W.; Lu, M.-M. Prediction of Meiyu rainfall in Taiwan by multi-lead physical–empirical models. Clim. Dyn. 2015, 44, 3033–3042. [Google Scholar] [CrossRef]
- Teng, H.; Branstator, G. Causes of extreme ridges that induce California droughts. J. Clim. 2017, 30, 1477–1492. [Google Scholar] [CrossRef]
- Capotondi, A.; Wittenberg, A.T.; Newman, M.; Di Lorenzo, E.; Yu, J.Y.; Braconnot, P.; Cole, J.; Dewitte, B.; Giese, B.; Guilyardi, E.; et al. Understanding ENSO diversity. Bull. Am. Meteor. Soc. 2015, 96, 921–938. [Google Scholar] [CrossRef]
- Paek, H.; Yu, J.-Y.; Qian, C. Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett. 2017, 44, 1848–1856. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Delworth, T.L.; Booth, B. Origin of Atlantic decadal swings. Nature 2017, 548, 284–285. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.-Y.; Paek, H. Precursors of ENSO beyond the tropical Pacific. US CLIVAR Var. 2015, 13, 15–20. [Google Scholar]
- Wang, L.; Yu, J.-Y.; Paek, H. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun. 2017, 8, 14887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Kucharski, F.; Li, J.; Jin, F.-F.; Kang, I.-S.; Ding, R. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. 2017, 8, 15998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Period Name | Period |
---|---|
Period 1 | 1974/1975~2014/2015 (41 years) |
Period 2 | 1994/1995~2014/2015 (21 years) |
Period | PC1 | PC2 |
---|---|---|
Period 1 (41 years) | −0.27 | −0.35 |
Period 2 (21 years) | −0.37 | −0.44 |
Index | PC1 | PC2 | PRCP |
---|---|---|---|
NINO34 | −0.41 | −0.41 | 0.33 |
NINO4 | −0.42 | −0.31 | 0.30 |
NINO12 | −0.27 | −0.37 | 0.40 |
EMI | −0.36 | −0.12 | 0.18 |
PDO | −0.53 | −0.25 | 0.19 |
wNINO | 0.17 | 0.42 | −0.15 |
SOI | −0.28 | 0.44 | −0.47 |
NAO | 0.78 | −0.38 | −0.11 |
AO | 0.94 | −0.20 | −0.12 |
Mode | Years |
---|---|
Positive PC2 | 1979, 1982, 1985, 1990, 2009, 2011, and 2014 (7) |
Negative PC2 | 1981, 1983, 1992, 1995, 1998, and 2012 (6) |
CA Climate Division | Constant | Coefficient (WTP_diff) |
---|---|---|
North Coast (D1) | 5.782 | −12.776 |
Sacramento River (D2) | 5.510 | −11.094 |
Northeast Interior Basins (D3) | 1.259 | −4.856 |
Central Coast Drainage (D4) | 3.960 | −8.716 |
San Joaquin Drainage (D5) | 2.656 | −7.102 |
South Coast Drainage (D6) | 1.970 | −8.414 |
Southeast Desert Basin (D7) | 0.306 | −2.233 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myoung, B.; Yeh, S.-W.; Kim, J.; Kafatos, M.C. Impacts of Pacific SSTs on Atmospheric Circulations Leading to California Winter Precipitation Variability: A Diagnostic Modeling. Atmosphere 2018, 9, 455. https://doi.org/10.3390/atmos9110455
Myoung B, Yeh S-W, Kim J, Kafatos MC. Impacts of Pacific SSTs on Atmospheric Circulations Leading to California Winter Precipitation Variability: A Diagnostic Modeling. Atmosphere. 2018; 9(11):455. https://doi.org/10.3390/atmos9110455
Chicago/Turabian StyleMyoung, Boksoon, Sang-Wook Yeh, Jinwon Kim, and Menas C. Kafatos. 2018. "Impacts of Pacific SSTs on Atmospheric Circulations Leading to California Winter Precipitation Variability: A Diagnostic Modeling" Atmosphere 9, no. 11: 455. https://doi.org/10.3390/atmos9110455
APA StyleMyoung, B., Yeh, S. -W., Kim, J., & Kafatos, M. C. (2018). Impacts of Pacific SSTs on Atmospheric Circulations Leading to California Winter Precipitation Variability: A Diagnostic Modeling. Atmosphere, 9(11), 455. https://doi.org/10.3390/atmos9110455