Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure
Abstract
:1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Authors Contributions
Conflicts of Interest
References
- Casas, A.L.F.; Santos, G.M.D.; Chiocheti, N.B.; de Andrade, M. Effects of Temperature Variation on the Human Cardiovascular System: A Systematic Review. In Climate Change and Health. Climate Change Management; Leal Filho, W., Azeiteiro, U., Alves, F., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Elwood, P.C.; Beswick, A.; O’Brien, J.R.; Renaud, S.; Fifield, R.; Limb, E.S.; Bainton, D. Temperature and risk factors for ischaemic heart disease in the Caerphilly prospective study. Br. Heart 1993, 70, 520–523. [Google Scholar] [CrossRef]
- Woodhouse, P.R.; Khaw, K.T.; Plummer, M. Seasonal variation of blood pressure and its relationship to ambient temperature in an elderly population. J. Hypertens. 1993, 11, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, P.R.; Khaw, K.T.; Plummer, M.; Foley, A.; Meade, T.W. Seasonal variations of plasma fibrinogen and factorVII activity in the elderly: Winter infections and death from cardiovascular disease. Lancet 1994, 343, 435–439. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A., 3rd; Kanner, R.E.; Villegas, M.G.; Schwartz, J. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure. Res. Rep. Health Eff. Inst. 1999, 83, 1–19. [Google Scholar]
- Weinbacher, M.; Martina, B.; Bart, T.; Drewe, J.; Gasser, P.; Gyr, K. Blood pressure and atmospheric pressure. Ann. N. Y. Acad. Sci. 1996, 738, 335–336. [Google Scholar] [CrossRef]
- Kamiński, M.; Cieślik-Guerra, U.I.; Kotas, R.; Mazur, P.; Marańda, W.; Piotrowicz, M.; Sakowicz, B.; Napieralski, A.; Trzos, E.; Uznańska-Loch, B.; et al. Evaluation of the impact of atmospheric pressure in different seasons on blood pressure in patients with arterial hypertension. Int. J. Occup. Med. Environ. Health 2016, 29, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Larcan, A.; Lambert, H.; Stoltz, J.F.; Laprevote-Heuilly, M.C.; Kempf, J.B.; Lambert, J. Climatological parameters and acute vascular, neurological and cardiac accidents. Rev. Epidemiol. Sante Publique 1982, 30, 343–354. [Google Scholar] [PubMed]
- Hori, A.; Hashizume, M.; Tsuda, Y.; Tsukahara, T.; Nomiyama, T. Effects of weather variability and air pollutants on emergency admissions for cardiovascular and cerebrovascular diseases. Int. J. Environ. Health Res. 2012, 22, 416–430. [Google Scholar] [CrossRef] [PubMed]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redán, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart. J. 2013, 34, 2159–2219. [Google Scholar] [PubMed]
- Brook, R.D.; Weder, A.B.; Rajagopalan, S. The effects of environmental factors on blood pressure in clinical practice and research. J. Clin. Hypertens. 2011, 13, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Halonen, J.I.; Zanobetti, A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Relationship between outdoor temperature and blood pressure. Occup. Environ. Med. 2011, 68, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.G.; Sans, S.; Salomaa, V.; Kuulasmaa, K.; Dobson, A.J. The effect of temperature on systolic blood pressure. Blood Press. Monit. 2007, 12, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Modesti, P.A.; Morabito, M.; Massetti, L.; Rapi, S.; Orlandini, S.; Mancia, G.; Gensini, G.F.; Parati, G. Seasonal blood pressure changes: An independent relationship with temperature and daylight hours. Hypertension 2013, 61, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S. Particulate matter air pollution and blood pressure. J. Am. Soc. Hypertens. 2009, 3, 332–350. [Google Scholar] [CrossRef] [PubMed]
- Fuks, K.; Mebus, S.; Hertel, S.; Viehmann, A.; Nonnemacher, M.; Dragano, N.; Möhlenkamp, S.; Jakobs, H.; Kessler, C.; Erbel, R.; et al. Long-term urban particulate air pollution, traffic noise and arterial blood pressure. Environ. Health Perspect. 2011, 119, 1706–1711. [Google Scholar] [CrossRef] [PubMed]
- Barregard, L.; Bonde, E.; Ohrstrom, E. Risk of hypertension from exposure to road traffic noise in a population-based sample. Occup. Environ. Med. 2009, 66, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Ghione, S.; Mezzasalma, L.; Del Seppia, C.; Papi, F. Do geomagnetic disturbances of solar origin affect arterial blood pressure? J. Hum. Hypertens. 1998, 12, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, S.; Stoilova, I. Planetary geomagnetic indices, human physiology and subjective complaints. J. Balkan Geophys. Soc. 2003, 6, 37–45. [Google Scholar]
- Furlan, R.; Guzzetti, S.; Crivellaro, W.; Dassi, S.; Tinelli, M.; Baselli, G.; Cerutti, S.; Lombardi, F.; Pagani, M.; Malliani, A. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circ. J. 1990, 81, 537–547. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Portaluppi, F. Circadian variation of blood pressure: The basis for the chronotherapy of hypertension. Adv. Drug. Deliv. Rev. 2007, 59, 904–922. [Google Scholar] [CrossRef] [PubMed]
- White, W.B. Importance of blood pressure control over a 24-hour period. J. Manag. Care. Spec. Pharm. 2007, 13, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Barrientos, A.; López-Romero, P.; Vivas, D.; Castro-Ferreira, F.; Núñez-Gil, I.; Franco, E.; Ruiz-Mateos, B.; García-Rubira, J.C.; Fernández-Ortiz, A.; Macaya, C.; et al. Circadian variations of infarct size in acute myocardial infarction. Heart 2011, 97, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Charach, G.; Shochat, M.; Argov, O.; Weintraub, M.; Charach, L. Seasonal changes in blood pressure: Cardiac and cerebrovascular morbidity and mortality. World J. Hypertens. 2013, 3, 1–8. [Google Scholar] [CrossRef]
- Hanna, J.M. Climate, altitude, and blood pressure. Hum. Biol. 1999, 71, 553–582. [Google Scholar] [PubMed]
- Alperovitch, A.; Lacombe, J.M.; Hanon, O.; Dartigues, J.F.; Ritchie, K.; Ducimetière, P.; Tzourio, C. Relationship between blood pressure and outdoor temperature in a large sample of elderly individuals: The Three-City study. Arch. Intern. Med. 2009, 169, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Cornélissen, G.; Halberg, F.; Otsuka, K.; Ohkawa, S.I. Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity. Biomed. Pharmacother. 2001, 55, 76–83. [Google Scholar] [CrossRef]
- Cornelissen, G.; Halberg, F.; Breus, T.; Syutkina, E.V.; Baevsky, R.; Weydahl, A.; Watanabe, Y.; Otsuka, K.; Siegelova, J.; Fiser, B.; et al. Non-photic solar associations of heart rate variability and myocardial infarction. J. Atmos. Sol. Terr. Phys. 2002, 64, 707–720. [Google Scholar] [CrossRef]
- Palmer, S.J.; Rycroft, M.J.; Cermack, M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv. Geophys. 2006, 27, 557–595. [Google Scholar] [CrossRef]
- Gurfinkel, Y.I.; Atkov, O.Y.; Vasin, A.L.; Breus, T.K.; Sasonko, M.L.; Pishchalnikov, R.Y. Effect of zero magnetic field on cardiovascular system and microcirculation. Life Sci. Space Res. 2016, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Babarskiene, R.M.; Dobozinskas, P.; Sakalyte, G.; Lopatiene, K.; Mikelionis, N. Effects of weather and heliophysical conditions on emergency ambulance calls for elevated arterial blood pressure. Int. J. Environ. Res. Public Health 2015, 12, 2622–2638. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Babarskiene, R.M.; Dobozinskas, P.; Dedele, A.; Lopatiene, K.; Ragaisyte, N. The short-term associations of weather and air pollution with emergency ambulance calls for paroxysmal atrial fibrillation. Environ. Sci. Pollut. Res. Int. 2017, 24, 15031–15043. [Google Scholar] [CrossRef] [PubMed]
- Paternoster, R.; Brame, R.; Mazerolle, P.; Piquero, A. Using the correct statistical test for the equality of regression coefficients. Criminology 1998, 36, 859–866. [Google Scholar] [CrossRef]
- Madsen, C.; Nafstad, P. Associations between environmental exposure and blood pressure among participants in the Oslo Health Study (HUBRO). Eur. J. Epidemiol. 2006, 21, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.C.; Kim, H.; Oh, S.Y.; Lim, Y.H.; Kim, S.Y.; Yoon, H.J.; Park, M. Association of cold ambient temperature and cardiovascular markers. Sci. Total Environ. 2012, 1, 435–436. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Pearson, D.; Malig, B.; Broadwin, R.; Green, R. The effect of high ambient temperature on emergency room visits. Epidemiology 2012, 23, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Li, Q.; Wang, J.; Lavigne, E.; Gasparrini, A.; Copes, R.; Yagouti, A.; Burnett, R.T.; Goldberg, M.S.; Villeneuve, P.J.; et al. Hospitalizations from hypertensive diseases, diabetes, and arrhythmia in relation to low and high temperatures: Population-based study. Sci. Rep. 2016, 26, 30283. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Luo, M.; Walker, R.J.; Liu, X.; Hwang, S.A.; Chinery, R. Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology 2009, 20, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Morabito, M.; Crisci, A.; Orlandini, S.; Maracchi, G.; Gensini, G.F.; Modesti, P.A. A synoptic approach to weather conditions discloses a relationship with ambulatory blood pressure in hypertensives. Am. J. Hypertens. 2008, 21, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Kulakov, I.V.; Nasonova, E.V. The specific features of circadian blood pressure variations in patients with hypertensive disease in different types of weather. Klin. Med. 2004, 82, 24–27. [Google Scholar]
- Brook, R.D.; Shin, H.H.; Bard, R.L.; Burnett, R.T.; Vette, A.; Croghan, C.; Williams, R. Can personal exposures to higher nighttime and early-morning temperatures increase blood pressure? J. Clin. Hypertens. 2011, 13, 881–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modesti, P.A.; Morabito, M.; Bertolozzi, I.; Massetti, L.; Panci, G.; Lumachi, C.; Giglio, A.; Bilo, G.; Caldara, G.; Lonati, L.; et al. Weather-related changes in 24-hour blood pressure profile. Effects of age and implications for hypertension management. Hypertension 2006, 47, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Kario, K. Morning surge in blood pressure and cardiovascular risk: Evidence and perspectives. Hypertension 2010, 56, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Gurfinkel, Y.I.; Lyubimov, V.V.; Oraevskii, V.N.; Parfenova, L.M.; Yurev, A.S. Effect of geomagnetic disturbances on the capillary blood flow in patients with coronary heart disease. Biophysics 1995, 40, 793–799. [Google Scholar]
- Breus, T.K.; Baevskii, R.M.; Chernikova, A.G. Effects of geomagnetic disturbances on humans functional state in space flight. J. Biomed. Sci. Eng. 2012, 5, 341–355. [Google Scholar] [CrossRef]
- Stoupel, E.; Kusniec, J.; Mazur, A.; Abramson, E.; Israelevich, P.; Strasberg, B. Timing of life threatening arrhythmias detected by implantable cardioverter-defibrillators in relation to changes in cosmophysical factors. Cardiol. J. 2008, 15, 437–440. [Google Scholar] [PubMed]
- Vencloviene, J.; Babarskiene, R.M.; Slapikas, R.; Sakalyte, G. The association between phenomena on the Sun, geomagnetic activity, meteorological variables, and cardiovascular characteristic of patients with myocardial infarction. Int. J. Biometeorol. 2013, 57, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Babarskiene, R.M.; Milvidaite, I.; Kubilius, R.; Stasionyte, J. The effect of silar-geomagnetic during and after admission on survival in patients with acute coronary syndromes. Int. J. Biometerol. 2014, 58, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, B.; Diaz-Sandoval, R. Effects of Solar activity on myocardial infarction death in low geomagnetic latitude regions. Nat. Hazards 2004, 32, 35–36. [Google Scholar] [CrossRef]
- Papailiou, M.; Mavromichalaki, H.; Kudela, K.; Stetiarova, J.; Dimitrova, S. Effect of geomagnetic disturbances on physiological parameters: An investigation on aviators. Adv. Space Res. 2011, 48, 1545–1550. [Google Scholar] [CrossRef]
- Dimitrova, S.; Angelov, I.; Petrova, E. Solar and geomagnetic activity effects on heart rate variability. Nat. Hazards 2013, 69, 25–37. [Google Scholar] [CrossRef]
- Galata, E.; Ioannidou, S.; Papailiou, M.; Mavromichalaki, H.; Paravolidakis, K.; Kouremeti, M.; Rentifis, L.; Simantirakis, E.; Trachanas, K. Impact of space weather on human heart rate during the years 2011–2013. Astrophys. Space Sci. 2017, 362, 138. [Google Scholar] [CrossRef]
Variable | Range | Mean (SD) | Percentiles | ||
---|---|---|---|---|---|
25 | 50 | 75 | |||
Daily number of calls | |||||
Daily | 5–41 | 18.8 (5.4) | 15 | 18 | 22 |
8:00–13:59 | 0–14 | 4.9 (2.4) | 3 | 5 | 6 |
14:00–21:59 | 1–19 | 8.4 (3.2) | 6 | 8 | 11 |
22:00–7:59 | 0–15 | 5.5 (2.6) | 4 | 5 | 7 |
Age, years | 17–104 | 67 (15) | 58 | 70 | 78 |
Environmental variables | |||||
Air temperature (°C) | −21.8–27.2 | 6.5 (9.7) | −0.1 | 6.8 | 14.5 |
Wind speed (kt) | 0.5–17.2 | 6.3 (2.8) | 4.2 | 6.1 | 8.0 |
Barometric pressure (hPA) | 977–1032 | 1005 (9) | 1000 | 1006 | 1011 |
Relative humidity (%) | 28–100 | 80 (13) | 72 | 82 | 90 |
Day length (hour) | 7.2–17.3 | 12.4 (3.4) | 9.2 | 12.5 | 15.7 |
Ap indices | 0–55 | 5.5 (5.5) | 2 | 4 | 6 |
Variable | Lag | Whole Day | 8:00–13:59 | 14:00–21:59 | 22:00–7:59 |
---|---|---|---|---|---|
RR (95% CI) | RR (95% CI) | RR (95% CI) | RR (95% CI) | ||
Day length | 0.93 (0.90–0.95) ** | 0.98 (0.93–1.04) ♦ | 0.92 (0.88–0.96) ** | 0.89 (0.85–0.94) ** | |
Weekdays not coincident with holidays | 1.04 (1.01–1.08) | 1.11 (1.04–1.19) **,†,♦ | 1.01 (0.96–1.06) | 0.99 (0.94–1.06) | |
RRs additionally adjusted for day length and the day of the week | |||||
TW | 0 | 0.83 (0.78–0.88) ** | 0.91 (0.81–1.03) † | 0.77 (0.70–0.85) ** | 0.84 (0.75–0.94) * |
TW | 1 | 0.83 (0.78–0.89) ** | 0.90 (0.80–1.02) | 0.79 (0.72–0.87) ** | 0.90 (0.80–1.01) |
TW | 2 | 0.89 (0.83–0.95) ** | 0.96 (0.85–1.09) | 0.81 (0.74–0.90) ** | 0.95 (0.84–1.07) |
TW | 3 | 0.90 (0.85–0.96) * | 0.94 (0.83–1.07) | 0.82 (0.75–0.91) * | 1.03 (0.92–1.17) |
TW | 4 | 0.98 (0.92–1.04) | 0.99 (0.88–1.12) | 0.91 (0.83–1.00) | 1.03 (0.92–1.16) |
TW | 5 | 1.03 (0.97–1.10) | 1.11 (0.98–1.26) | 0.96 (0.88–1.06) | 0.97 (0.86–1.09) |
TW | 6 | 1.04 (0.98–1.11) | 1.13 (1.01–1.28) | 0.99 (0.90–1.09) | 0.98 (0.87–1.10) |
TW | 7 | 1.05 (0.99–1.12) | 1.16 (1.03–1.30) | 1.06 (0.97–1.16) | 0.96 (0.86–1.08) |
TW | 0–1 | 0.81 (0.76–0.87) ** | 0.89 (0.78–1.02) † | 0.76 (0.68–0.84) ** | 0.85 (0.75–0.96) * |
TW | 5–7 | 1.05 (0.98–1.13) | 1.18 (1.03–1.35) | 1.00 (0.90–1.12) | 0.96 (0.84–1.10) |
Variable | Lag | RR (95% CI) | p | RR † (95% CI) | p † |
---|---|---|---|---|---|
Whole day | |||||
TW | 0–1 | 0.83 (0.78–0.89) | <0.001 | 0.85 (0.79–0.92) | <0.001 |
Δ of TWt between lags of 4–7 and 3 days | 1.10 (1.02–1.18) | 0.014 | 1.10 (1.02–1.19) | 0.014 | |
WS | 6 | 1.01 (1.00–1.01) | 0.005 | 1.01 (1.01–1.02) | <0.001 |
BPL (low BP) | 0–2 | 1.06 (1.02–1.09) | 0.002 | 1.07 (1.03–1.11) | <0.001 |
BPH (high BP) | 4 | 0.96 (0.93–0.99) | 0.017 | 0.95 (0.92–0.99) | 0.012 |
In the morning until before noon | |||||
TW | 0–1 | 0.90 (0.79–1.03) | 0.136 | 0.91 (0.79–1.04 | 0.170 |
TW | 5–7 | 1.20 (1.04–1.38) | 0.014 | 1.18 (1.02–1.37) | 0.030 |
WS below 6.1 kt | 4–6 | 1.04 (1.01–1.08) | 0.019 | 1.05 (1.02–1.09) | 0.007 |
BPL (low BP) | 0–2 | 1.09 (1.02–1.16) | 0.009 | 1.09 (1.02–1.16) | 0.014 |
BPH (high BP) | 4–6 | 0.93 (0.86–1.02) | 0.109 | 0.91 (0.83–0.99) | 0.035 |
BPL (low BP) | 5 | 0.92 (0.86–0.98) | 0.007 | 0.91 (0.85–0.97) | 0.005 |
ΔRH of RH above 82% | 0 | 1.08 (1.02–1.15) | 0.015 | 1.09 (1.02–1.16) | 0.012 |
ΔRH of RH below 82% | 3–4 | 1.05 (1.01–1.09) | 0.010 | 1.05 (1.01–1.13) | 0.009 |
ΔRH of RH below 82% | 6 | 1.08 (1.03–1.13) | 0.001 | 1.08 (1.03–1.13) | 0.001 |
In the afternoon until evening | |||||
TW | 0 | 0.79 (0.71–0.87) | <0.001 | 0.78 (0.70–0.85) | <0.001 |
WS | 6 | 1.01 (1.00–1.02) | 0.023 | 1.01 (1.00–1.02) | 0.017 |
WS below 6.1 kt | 0–4 | 1.05 (1.02–1.08) | 0.001 | 1.07 (1.03–0.10) | <0.001 |
BPL (low BP) | 6 | 1.05 (1.01–1.10) | 0.025 | 1.06 (1.01–1.11) | 0.015 |
At night until early morning | |||||
TW | 0 | 0.86 (0.77–0.97) | 0.014 | 0.88 (0.77–0.99) | 0.035 |
BPH (high BP) | 3 | 0.90 (0.85–0.96) | 0.001 | 0.91 (0.85–0.97) | 0.004 |
RH below 82% | 1 | 1.04 (1.00–1.08) | 0.077 | 1.04 (0.99–1.09) | 0.130 |
RH above 82% | 4 | 0.88 (0.83–0.95) | <0.001 | 0.90 (0.83–0.97) | 0.003 |
Variable | n | Mean | RR (p) | RR †† (p) | RR ††† (95% CI) | p |
---|---|---|---|---|---|---|
Whole day | ||||||
Reference days † | 442 | 18.5 | 1 | 1 | ||
Ap < 4 | 375 | 18.9 | 1.03 (0.116) | 1.04 (0.037) | 1.04 (1.00–1.08) | 0.034 |
Ap ≥ 16 without HSSW | 31 | 18.8 | 1.04 (0.373) | 1.03 (0.528) | 1.02 (0.94–1.12) | |
Ap ≥ 16 with HSSW | 17 | 21.6 | 1.19 (0.001) | 1.20 (0.001) | 1.17 (1.05–1.30) | 0.006 |
HSSW occurring after active-stormy days | 12 | 19.9 | 1.23 (0.002) | 1.14 (0.050) | 1.14 (1.00–1.31) | 0.051 |
2 days after active-stormy GMA level | 34 | 20.1 | 1.09 (0.039) | 1.09 (0.044) | 1.09 (1.00–1.18) | 0.041 |
In the morning until before noon | ||||||
Reference days † | 4.9 | 1 | 1 | |||
Ap < 4 | 4.8 | 0.98 (0.623) | 1.00 (0.886) | 1.00 (0.93–1.07) | ||
Ap ≥ 16 without HSSW | 5.6 | 1.17 (0.046) | 1.19 (0.033) | 1.20 (1.02–1.41) | 0.025 | |
Ap ≥ 16 with HSSW | 6.1 | 1.28 (0.018) | 1.28 (0.014) | 1.24 (1.01–1.53) | 0.043 | |
HSSW occurring after active-stormy days | 4.8 | 1.07 (0.606) | 1.02 (0.862) | 1.01 (0.77–1.33) | ||
2 days after active-stormy GMA level | 5.5 | 1.13 (0.128) | 1.15 (0.078) | 1.15 (0.98–1.34) | 0.078 | |
Ap ≥ 16 | 1.22 (1.07–1.40) | 0.003 | ||||
In the afternoon until evening | ||||||
Reference days † | 8.1 | 1 | 1 | |||
Ap < 4 | 8.5 | 1.06 (0.015) | 1.07 (0.007) | 1.07 (1.02–1.13) | 0.009 | |
Ap ≥ 16 without HSSW | 8.1 | 1.01 (0.930) | 0.97 (0.601) | 0.97 (0.85–1.10) | ||
Ap ≥ 16 with HSSW | 9.5 | 1.16 (0.068) | 1.15 (0.097) | 1.12 (0.95–1.33) | ||
HSSW occurring after active-stormy days | 9.3 | 1.32 (0.006) | 1.21 (0.061) | 1.24 (1.01–1.51) | 0.036 | |
2 days after active-stormy GMA level | 8.7 | 1.07 (0.300) | 1.06 (0.376) | 1.06 (0.94–1.20) | ||
HSSW | 1.14 (1.01–1.31) | 0.045 | ||||
At night until early morning | ||||||
Reference days † | 5.6 | 1 | 1 | |||
Ap < 4 | 5.5 | 0.98 (0.416) | 0.99 (0.840) | 0.98 (0.92–1.05) | ||
Ap ≥ 16 without HSSW | 5.2 | 0.96 (0.633) | 0.96 (0.622) | 0.95 (0.81–1.12) | ||
Ap ≥ 16 with HSSW | 5.7 | 1.06 (0.576) | 1.03 (0.781) | 1.03 (0.84–1.27) | ||
HSSW occurring after active-stormy days | 6.8 | 1.44 (0.002) | 1.32 (0.019) | 1.33 (1.06–1.68) | 0.016 | |
2 days after active-stormy GMA level | 5.0 | 0.91 (0.240) | 0.90 (0.177) | 0.89 (0.76–1.05) |
Age ≤ 65 Years | Age > 65 Years | ||||||
---|---|---|---|---|---|---|---|
Variable | Lag | RR | p | Variable | Lag | RR | p |
Whole day | |||||||
TW | 0–1 | 0.88 | 0.025 | TW | 0–1 | 0.87 | 0.014 |
WS | 6 | 1.02 | <0.001 | T | 0–4 | 0.88 | 0.001 |
BPL | 2 | 1.08 | 0.003 | TW | 5–7 | 1.15 | 0.004 |
ΔBPL | 0 | 1.11 | 0.001 | WS below 6.1 kt | 0–4 | 1.03 | 0.019 |
ΔBPL | 5 | 0.95 | 0.085 | BPL | 0–2 | 1.05 | 0.034 |
RH below 82% | 0 | 1.04 | 0.035 | BPH | 4 | 0.92 | 0.001 |
Ap < 4 | 1.04 | 0.125 | 1.04 | 0.118 | |||
Ap ≥ 16 without HSSW | 1.06 | 0.97 | |||||
Ap ≥ 16 with HSSW | 1.00 | 1.27 | <0.001 | ||||
HSSW occurring after Ap ≥ 16 days | 1.34 | 0.004 | 1.03 | ||||
2 days after Ap ≥ 16 | 1.11 | 0.122 | 1.08 | 0.159 | |||
In the morning until before noon | |||||||
ΔT | 1 | 0.78 | 0.014 | ΔTW | 3–4 | 0.79 | 0.004 |
ΔWS of WS below 6.1 kt | 6 | 1.05 | 0.007 | WS below 6.1 kt | 4–6 | 1.05 | 0.021 |
ΔBPL | 0 | 1.19 | 0.004 | BPL | 0–2 | 1.12 | 0.006 |
ΔBPL | 3–4 | 1.16 | 0.001 | ΔRH of RH below 82% | 3–4 | 1.07 | 0.004 |
BPH | 6 | 0.88 | 0.022 | ΔRH of RH above 82% | 2 | 1.11 | 0.015 |
ΔRH | 0 | 1.08 | 0.003 | ΔRH of RH below 82% | 6 | 1.09 | 0.003 |
ΔRH of RH > 82% | 4 | 0.90 | 0.042 | ||||
Ap < 4 | 1.03 | 0.97 | |||||
Ap ≥ 16 without HSSW | 1.25 | 0.074 | 1.10 | ||||
Ap ≥ 16 with HSSW | 1.18 | 1.32 | 0.032 | ||||
HSSW occurring after Ap ≥ 16 days | 1.44 | 0.053 | 0.74 | 0.146 | |||
2 days after Ap ≥ 16 | 1.04 | 1.19 | 0.072 | ||||
In the afternoon until evening | |||||||
TW | 0–1 | 0.78 | 0.014 | TW | 0–1 | 0.77 | 0.001 |
WS | 6 | 1.02 | <0.001 | TC | 1 | 1.15 | 0.013 |
BPL | 0 | 1.07 | 0.045 | WS below 6.1 kt | 0–4 | 1.07 | 0.001 |
RH below 82% | 0 | 1.07 | 0.023 | BPL | 6 | 1.08 | 0.009 |
RH above 82% | 1 | 0.90 | 0.017 | ||||
ΔRH of RH above 82% | 4 | 1.11 | 0.011 | ||||
Ap < 4 | 1.10 | 0.022 | 1.04 | 0.218 | |||
Ap ≥ 16 without HSSW | 1.01 | 0.90 | 0.219 | ||||
Ap ≥ 16 with HSSW | 0.92 | 1.28 | 0.012 | ||||
HSSW occurring after Ap ≥ 16 days | 1.28 | 0.122 | 1.19 | 0.182 | |||
2 days after Ap ≥ 16 | 1.15 | 0.150 | 0.97 | ||||
At night until early morning | |||||||
TW | 7 | 0.70 | 0.006 | TW | 0 | 0.77 | 0.001 |
T | 7 | 1.17 | 0.037 | ||||
−ΔWS of WS above 6.1 kt | 4 | 1.03 | 0.008 | WS below 6.1 kt | 0 | 1.03 | 0.029 |
BP | 2 | 0.94 | 0.014 | ΔBPH | 1 | 1.16 | 0.011 |
RH | 0 | 1.06 | 0.016 | ΔRH of RH below 82% | 4 | 1.08 | 0.008 |
RH | 6 | 1.08 | 0.002 | RH above 82% | 4 | 0.90 | 0.022 |
RH above 82% | 4 | 0.90 | 0.047 | ||||
Ap < 4 | 0.98 | 1.00 | |||||
Ap ≥ 16 without HSSW | 0.98 | 0.78 | 0.032 | ||||
Ap ≥ 16 with HSSW | 0.91 | 1.04 | |||||
HSSW occurring after Ap ≥ 16 days | 1.35 | 0.107 | 1.32 | 0.075 | |||
2 days after Ap ≥ 16 | 0.87 | 0.289 | 0.90 | 0.315 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vencloviene, J.; Braziene, A.; Dobozinskas, P. Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure. Atmosphere 2018, 9, 114. https://doi.org/10.3390/atmos9030114
Vencloviene J, Braziene A, Dobozinskas P. Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure. Atmosphere. 2018; 9(3):114. https://doi.org/10.3390/atmos9030114
Chicago/Turabian StyleVencloviene, Jone, Agne Braziene, and Paulius Dobozinskas. 2018. "Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure" Atmosphere 9, no. 3: 114. https://doi.org/10.3390/atmos9030114
APA StyleVencloviene, J., Braziene, A., & Dobozinskas, P. (2018). Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure. Atmosphere, 9(3), 114. https://doi.org/10.3390/atmos9030114